Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số điểm được cho trước là x(điểm)
(Điều kiện: \(x\in Z^+\))
Số đoạn thẳng vẽ được là \(\dfrac{x\left(x-1\right)}{2}\left(đoạn\right)\)
Theo đề, ta có: \(\dfrac{x\left(x-1\right)}{2}=190\)
=>\(x^2-x=190\cdot2=380\)
=>\(x^2-x-380=0\)
=>(x-20)(x+19)=0
=>\(\left[{}\begin{matrix}x-20=0\\x+19=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=20\left(nhận\right)\\x=-19\left(loại\right)\end{matrix}\right.\)
Vậy: Số điểm cho trước là 20 điểm
Gọi số điểm cho trước là x(điểm)
(Điều kiện: \(x\in Z^+\))
Số đoạn thẳng vẽ được khi cho x điểm là:
\(\dfrac{x\left(x-1\right)}{2}\)
Theo đề, ta có: \(\dfrac{x\left(x-1\right)}{2}=190\)
=>\(x\left(x-1\right)=380\)
=>\(x^2-x-380=0\)
=>(x-20)(x+19)=0
=>\(\left[{}\begin{matrix}x-20=0\\x+19=0\end{matrix}\right.\)
=>\(\left[{}\begin{matrix}x=20\left(nhận\right)\\x=-19\left(loại\right)\end{matrix}\right.\)
Vậy: Có 20 điểm cho trước
b1:Giải
Cứ 1điểm ta nối được với 99 điểm còn lại nên ta được số đoạn thẳng là:99.100=9900(đoạn thẳng)
Mà mỗi được tính 2 lần nên ta có số đoạn thẳng là:9900:2=4950(đoạn thẳng)
Vậy có tất cả 4950 đoạn thẳng
b2:
Số đoạn thẳng khi không có điểm nà thẳng hàng là:\(\frac{100.99}{2}\)=4950(đoạn thẳng)
Số đoạn thẳng khi có 10 điểm thẳng hàng là:4950-10+1=4941(đoạn thẳng)
Vậy có tất cả 4941 đoạn thẳng khi có 10 điểm thẳng hàng
Gọi số điểm cho trước là n (n ∈ N*)
Vẽ từ 1 điểm bất kì với n – 1 điểm còn lại, ta được n – 1 đoạn thẳng.
Với n điểm, nên có n(n – 1) (đoạn thẳng). Nhưng mỗi đoạn thẳng đã được tính 2 lần. Do đó số đoạn thẳng thực sự có là: n(n – 1) : 2 (đoạn thẳng)
Theo đề bài ta có:
n(n – 1) : 2 = 55
n(n – 1) = 55 . 2
n(n – 1) = 110
n(n – 1) = 11 . 10
n = 11
Vậy có 11 điểm cho trước
nhanh lên, giúp với
có số điểm cho trước là
21x2=42(điểm)
Đáp số:42 điểm