Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho a,b,c là các số thực dương:
Chứng minh rằng: a2+b2+c2+2abc+1≥2(ab+bc+ca)a2+b2+c2+2abc+1≥2(ab+bc+ca)
Ta thấy trong ba số thực dương a;b;ca;b;c luôn tồn tại hai số cùng lớn hơn hay bằng 11 hoặc nhỏ hơn hay bằng 11. Giả sử đó là bb và cc.
Khi đó ta có: (b−1)(c−1)≥0⇔bc≥b+c−1(b−1)(c−1)≥0⇔bc≥b+c−1 suy ra 2abc≥2ab+2ac−2a2abc≥2ab+2ac−2a
Do đó, a2+b2+c2+2abc+1≥a2+b2+c2+2ab+2ac−2a+1a2+b2+c2+2abc+1≥a2+b2+c2+2ab+2ac−2a+1
Nên bây giờ ta chỉ cần chứng minh: a2+b2+c2+2ab+2ac−2a+1≥2(ab+bc+ca)a2+b2+c2+2ab+2ac−2a+1≥2(ab+bc+ca)
⇔(a2−2a+1)+(b2+c2−2bc)≥0⇔(a−1)2+(b−c)2≥0⇔(a2−2a+1)+(b2+c2−2bc)≥0⇔(a−1)2+(b−c)2≥0 (đúng)
Bài toán được chứng minh. Dấu bằng xảy ra khi a=b=c=1a=b=c=1.
Sử dụng giả thiết ax−by=√3ax−by=3 ta có:
(a2+b2)(x2+y2)=(ax+by)2+(ax−by)2=(ax+by)2+3(a2+b2)(x2+y2)=(ax+by)2+(ax−by)2=(ax+by)2+3
Áp dụng bất đẳng thức CauchyCauchy , suy ra:
a2+b2=x2+y2=(a2+b2)+(x2+y2)≥2√(a2+b2)(x2+y2)=2√(ax+by)2+3a2+b2=x2+y2=(a2+b2)+(x2+y2)≥2(a2+b2)(x2+y2)=2(ax+by)2+3
Do đó, ta đưa về bài toán tìm GTNN của: 2√x2+3+x2x2+3+x trong đó x=ax+byx=ax+by
Ta có:
(2√x2+3+x)2=4(x2+3)+4x√x2+3+x2=(x2+3)+4x√x2+3+4x2+9=(√x2+3+2x)2+9≥9(2x2+3+x)2=4(x2+3)+4xx2+3+x2=(x2+3)+4xx2+3+4x2+9=(x2+3+2x)2+9≥9
⇒2√x2+3+x≥3⇒2x2+3+x≥3
Vậy MinT=3MinT=3
Sử dụng giả thiết ax−by=√3ax−by=3 ta có:
(a2+b2)(x2+y2)=(ax+by)2+(ax−by)2=(ax+by)2+3(a2+b2)(x2+y2)=(ax+by)2+(ax−by)2=(ax+by)2+3
Áp dụng bất đẳng thức CauchyCauchy , suy ra:
a2+b2=x2+y2=(a2+b2)+(x2+y2)≥2√(a2+b2)(x2+y2)=2√(ax+by)2+3a2+b2=x2+y2=(a2+b2)+(x2+y2)≥2(a2+b2)(x2+y2)=2(ax+by)2+3
Do đó, ta đưa về bài toán tìm GTNN của: 2√x2+3+x2x2+3+x trong đó x=ax+byx=ax+by
Ta có:
(2√x2+3+x)2=4(x2+3)+4x√x2+3+x2=(x2+3)+4x√x2+3+4x2+9=(√x2+3+2x)2+9≥9(2x2+3+x)2=4(x2+3)+4xx2+3+x2=(x2+3)+4xx2+3+4x2+9=(x2+3+2x)2+9≥9
⇒2√x2+3+x≥3⇒2x2+3+x≥3
Vậy MinT=3MinT=3
a2(b+c)2+5bc+b2(a+c)2+5ac≥4a29(b+c)2+4b29(a+c)2=49(a2(1−a)2+b2(1−b)2)(vì a+b+c=1)
a2(1−a)2−9a−24=(2−x)(3x−1)24(1−a)2≥0(vì )<a<1)
⇒a2(1−a)2≥9a−24
tương tự: b2(1−b)2≥9b−24
⇒P⩾49(9a−24+9b−24)−3(a+b)24=(a+b)−94−3(a+b)24.
đặt t=a+b(0<t<1)⇒P≥F(t)=−3t24+t−94(∗)
Xét hàm (∗) được: MinF(t)=F(23)=−19
⇒MinP=MinF(t)=−19.dấu "=" xảy ra khi a=b=c=13
Sửa đề: Chứng minh: \(2\le\frac{a^2+b^2+c^2}{a+b+c}+ab+bc+ca\le4\)
Đặt \(a+b+c=3u;ab+bc+ca=3v^2\)
\(\Rightarrow3\left(9u^2-6v^2\right)+3v^2=12\Rightarrow9u^2-6v^2+v^2=4\) (1)
\(\Rightarrow a^2+b^2+c^2=9u^2-6v^2=4-v^2\). Mặt khác từ (1) ta cũng suy ra:
\(\left(3u\right)^2=9u^2=4+5v^2\Rightarrow a+b+c=3u=\sqrt{4+5v^2}\)
Từ giả thiết ta có: \(12=3\left(a^2+b^2+c^2\right)+ab+bc+ca\ge4\left(ab+bc+ca\right)\)
\(\Rightarrow3v^2=ab+bc+ca\le3\Rightarrow0\le v\le1\) (vì \(v=\sqrt{\frac{ab+bc+ca}{3}}\ge0\)..)
Vì vậy ta cần chứng minh: \(2\le f\left(v\right)=\frac{4-v^2}{\sqrt{4+5v^2}}+3v^2\le4\) với \(0\le v\le1\)
Dễ thấy hàm số này đồng biến vì vậy f(v) đạt min tại v = 0 tức \(f\left(v\right)_{min}=2\)
Đạt Max tại v = 1 tức \(f\left(v\right)_{max}=4\)
Ta có đpcm.
P/s: Em mới học BĐT nên không chắc đâu, nhất là khúc mà em in đậm ấy.
đặt \(\sqrt{\frac{ab}{c}}=x;\sqrt{\frac{bc}{a}}=y;\sqrt{\frac{ca}{b}}=z\Rightarrow xy+yz+zx=1\)
\(P=\frac{ab}{ab+c}+\frac{bc}{bc+a}+\frac{ca}{ca+b}\)
\(=\frac{\frac{ab}{c}}{\frac{ab}{c}+1}+\frac{\frac{bc}{a}}{\frac{bc}{a}+1}+\frac{\frac{ca}{b}}{\frac{ca}{b}+1}=\frac{x^2}{x^2+1}+\frac{y^2}{y^2+1}+\frac{z^2}{z^2+1}\)
\(\ge\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2+\frac{\left(x+y+z\right)^2}{3}}=\frac{3}{4}\left(Q.E.D\right)\)
\(P=\left(1+2a\right)\left(1+2bc\right)\le\left(1+2a\right)\left(1+b^2+c^2\right)=\left(1+2a\right)\left(2-a^2\right)\)
\(=\frac{3}{2}\left(\frac{2}{3}+\frac{4}{3}a\right)\left(2-a^2\right)\le\frac{3}{8}\left(\frac{8}{3}+\frac{4}{3}a-a^2\right)^2=\frac{3}{8}\left[\frac{28}{9}-\left(a-\frac{2}{3}\right)^2\right]^2\)
\(\le\frac{3}{8}.\left(\frac{28}{9}\right)^2=\frac{98}{27}\)
Dấu \(=\)khi \(\hept{\begin{cases}b=c\\\frac{2}{3}+\frac{4}{3}a=2-a^2,a-\frac{2}{3}=0\\a^2+b^2+c^2=1\end{cases}}\Leftrightarrow\hept{\begin{cases}a=\frac{2}{3}\\b=c=\frac{\sqrt{\frac{5}{2}}}{3}\end{cases}}\).
Vậy \(maxP=\frac{98}{27}\).
Ta co : \(P=2a+2bc+2abc+1\)
Ap dung bdt Co-si : \(P\le a^2+b^2+c^2+2abc+2=2abc+3\)
Tiep tuc ap dung Co-si : \(1=a^2+b^2+c^2\ge3\sqrt[3]{a^2b^2c^2}< =>\sqrt[3]{a^2b^2c^2}\le\frac{1}{3}\)
\(< =>a^2b^2c^2\le\frac{1}{27}< =>abc\le\frac{1}{\sqrt{27}}\)
Khi do : \(2abc+3\le2.\frac{1}{\sqrt{27}}+3=\frac{2}{\sqrt{27}}+3\)
Suy ra \(P\le a^2+b^2+c^2+2abc+2\le\frac{2}{\sqrt{27}}+3\)
Dau "=" xay ra khi va chi khi \(a=b=c=\frac{1}{\sqrt{3}}\)
Vay Max P = \(\frac{2}{\sqrt{27}}+3\)khi a = b = c = \(\frac{1}{\sqrt{3}}\)
p/s : khong biet dau = co dung k nua , minh lam bay do
Có (a-b)²+(b-c)²+(c-a)²≥0
→ a²+b²+c²≥ab+bc+ca
và 3(a²+b²+c²)≥(a+b+c)²
Do đó ab+bc+ca≤3
a+b+c≤√(3(a²+b²+c²))=3
→ A≤6
Dấu "=" xảy ra khi và chỉ khi a=b=c=1