Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a,n thuộc z,n-2 khác o suy ra n khác 2
b,n=-1 ta có A=3 phần -3
n=-3 ta có A=3 phần -5
\(A=\frac{3}{n-2}\)
a, Vì mẫu không thể = 0 nên n ∈ Z
\(\Rightarrow\) n ≠ 2 .
\(\Rightarrow\) n ∈ { ... ; -1 ; 0 ; 1 ; 2 ; 3 ; 4 ; ... }
b, Để A là số nguyên :
\(\Rightarrow\) 3 ⋮ n - 2
\(\Rightarrow\) n - 2 ∈ Ư( 3 )
\(\Rightarrow\) n - 2 ∈ { -1 ; 1 ; 3 ; -3 }
\(\Rightarrow\)n ∈ { 1 ; -1 ; 3 ; 5 }
:D

Bình phương của số lẻ chia cho 4 dư 1: (2k + 1)² = 4k(k + 1) + 1 ♦
---------------
Ta cmr m + n và m² + n² không có chung ước nguyên tố lẻ. Thật thế giả sử m + n và m² + n² có chung ước nguyên tố lẻ p => p cũng là ước của (m + n)² - (m² + n²) = 2mn => p là ước của n (hoặc m) => p là ước của m (hoặc n) => m, n có ước chung p > 1, mâu thuẫn với giả thiết.
(m, n) = 1 => m, n không cùng chẵn. Ta xét 2 th
1. m, n cùng lẻ => m + n và m² + n² cùng chẵn. Mặt khác ♦ => m² + n² chia cho 4 dư 2, tức chỉ chia hết cho 2 => (m + n, m² + n²) = 2
2. m, n khác tính chẵn lẻ => m + n và m² + n² cùng lẻ => không có chung ước nguyên tố chẵn, và như trên đã chỉ ra chúng không có chung ước nguyên tố lẻ => (m + n, m² + n²) = 1

Bạn vào trang Wolfram Alpha sẽ thấy:
20182017 có 6667 chữ số
20172018 có 6669 chữ số
Vậy 20182017 < 20172018

\(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+........+\frac{1}{2015}\)
\(=1+\frac{1}{2}+\frac{1}{3}+.........+\frac{1}{2015}\)
\(=1+\left(1-\frac{1}{2}\right)+\left(1-\frac{2}{3}\right)+............+\left(1-\frac{2014}{2015}\right)\)
\(=\left(1+1+1+..........+1\right)-\left(\frac{1}{2}+\frac{2}{3}+.........+\frac{2014}{2015}\right)\)
\(=2014-\frac{1}{2}-\frac{2}{3}-.........-\frac{2014}{2015}\)
Từ đây bạn làm tiếp

Hình như phần 1 đề sai.Nếu C nhỏ nhất thì n không có giá trị thuộc Z.Nếu C lớn nhất thì n=(-1)
2.a.x/7+1/14=(-1)/y
<=>2x/14+1/14=(-1)/y
<=>2x+1/14=(-1)/y
=>(2x+1).y=14.(-1)
<=>(2x+1).y=(-14)
(2x+1) và y là cặp ước của (-14).
(-14)=(-1).14=(-14).1
Ta có bảng giá trị:
2x+1 | -1 | 14 | 1 | -14 |
2x | -2 | 13 | 0 | -15 |
x | -1 | 13/2 | 0 | -15/2 |
y | 14 | -1 | -14 | 1 |
Đánh giá | chọn | loại | chọn | loại |
Vậy(x,y) thuộc{(-1;14);(0;-14)}
b.x/9+-1/6=-1/y
<=>2x/9+-3/18=-1/y
<=>2x+(-3)/18=-1/y
=>[2x+(-3)].y=-1.18
<=>(2x-3).y=-18
(2x-3) và y là cặp ước của -18
-18=-1.18=-18.1
Ta có bảng giá trị:
2x-3 | -1 | 18 | 1 | -18 |
2x | 2 | 21 | 4 | -15 |
x | 1 | 21/2 | 2 | -15/2 |
y | 18 | -1 | -18 | 1 |
Đánh giá | chọn | loại | chọn | loại |
Vậy(x;y) thuộc{(1;18);(4;-18)}

a cần tìm các số nguyên dương \(m\) và \(n\) sao cho:
\(A = \frac{3 m - 1}{2 n} \text{v} \overset{ˋ}{\text{a}} B = \frac{3 n - 1}{2 m}\)
đều là các số nguyên dương.
Bước 1: Phân tích điều kiện
Ta có:
- \(A = \frac{3 m - 1}{2 n} \in \mathbb{Z}^{+}\)
- \(B = \frac{3 n - 1}{2 m} \in \mathbb{Z}^{+}\)
Suy ra:
- \(2 n \mid \left(\right. 3 m - 1 \left.\right)\) hay \(3 m - 1 \equiv 0 \left(\right. m o d 2 n \left.\right)\)
- \(2 m \mid \left(\right. 3 n - 1 \left.\right)\) hay \(3 n - 1 \equiv 0 \left(\right. m o d 2 m \left.\right)\)
Bước 2: Dùng thử vài giá trị nhỏ
Thử với \(m = 1\):
- \(A = \frac{3 \left(\right. 1 \left.\right) - 1}{2 n} = \frac{2}{2 n} = \frac{1}{n}\) → không nguyên trừ khi \(n = 1\)
- Nếu \(m = 1 , n = 1\) ⇒ \(A = \frac{2}{2} = 1\), \(B = \frac{2}{2} = 1\) ✅
Thử \(m = 2\):
- \(A = \frac{6 - 1}{2 n} = \frac{5}{2 n}\)
- Không nguyên trừ khi \(2 n = 1\) hoặc 5 ⇒ không có \(n \in \mathbb{Z}^{+}\) phù hợp
Thử \(m = 3\):
- \(A = \frac{9 - 1}{2 n} = \frac{8}{2 n} = \frac{4}{n}\)
- Để nguyên ⇒ \(n \in \left{\right. 1 , 2 , 4 \left.\right}\)
Thử với các giá trị \(n\) trên:
- \(n = 1\): \(B = \frac{3 \left(\right. 1 \left.\right) - 1}{2 \cdot 3} = \frac{2}{6} = \frac{1}{3}\) ❌
- \(n = 2\): \(B = \frac{6 - 1}{6} = \frac{5}{6}\) ❌
- \(n = 4\): \(B = \frac{12 - 1}{6} = \frac{11}{6}\) ❌
Không thỏa mãn.
Quay lại với cặp đúng đã tìm được:
\(\left(\right. m , n \left.\right) = \left(\right. 1 , 1 \left.\right) \Rightarrow A = 1 , B = 1 (đ \overset{ˋ}{\hat{\text{e}}} \text{u}\&\text{nbsp};\text{nguy} \hat{\text{e}} \text{n}\&\text{nbsp};\text{d}ưo\text{ng})\)
Bước 3: Giả sử \(A = a , B = b \in \mathbb{Z}^{+}\)
Từ:
\(\frac{3 m - 1}{2 n} = a \Rightarrow 3 m - 1 = 2 a n \Rightarrow 3 m = 2 a n + 1 \Rightarrow m = \frac{2 a n + 1}{3}\)
Tương tự:
\(\frac{3 n - 1}{2 m} = b \Rightarrow 3 n - 1 = 2 b m \Rightarrow 3 n = 2 b m + 1 \Rightarrow n = \frac{2 b m + 1}{3}\)
Thế \(m\) từ biểu thức 1 vào biểu thức 2:
\(n = \frac{2 b \cdot \left(\right. \frac{2 a n + 1}{3} \left.\right) + 1}{3} = \frac{\frac{4 a b n + 2 b}{3} + 1}{3} = \frac{4 a b n + 2 b + 3}{9}\)
Đặt \(x = n\), phương trình:
\(x = \frac{4 a b x + 2 b + 3}{9} \Rightarrow 9 x = 4 a b x + 2 b + 3 \Rightarrow x \left(\right. 9 - 4 a b \left.\right) = 2 b + 3\)
⇒ \(x = \frac{2 b + 3}{9 - 4 a b}\)
Để \(x = n \in \mathbb{Z}^{+}\), mẫu phải chia hết tử ⇒ xét vài giá trị \(a , b\)
Thử \(a = 1 , b = 1\):
\(x = \frac{2 \left(\right. 1 \left.\right) + 3}{9 - 4 \left(\right. 1 \left.\right) \left(\right. 1 \left.\right)} = \frac{5}{5} = 1 \Rightarrow n = 1 \Rightarrow m = \frac{2 \left(\right. 1 \left.\right) \left(\right. 1 \left.\right) + 1}{3} = \frac{3}{3} = 1\)
✅ Đúng rồi.
Các cặp khác?
Thử \(a = 2 , b = 1\):
\(x = \frac{2 \left(\right. 1 \left.\right) + 3}{9 - 4 \left(\right. 2 \left.\right) \left(\right. 1 \left.\right)} = \frac{5}{9 - 8} = \frac{5}{1} = 5 \Rightarrow n = 5 \Rightarrow m = \frac{2 \left(\right. 2 \left.\right) \left(\right. 5 \left.\right) + 1}{3} = \frac{21}{3} = 7\)
Kiểm tra:
- \(A = \frac{3 \cdot 7 - 1}{2 \cdot 5} = \frac{20}{10} = 2\)
- \(B = \frac{3 \cdot 5 - 1}{2 \cdot 7} = \frac{14}{14} = 1\)
✅ Đúng.
Kết luận:
Các cặp \(\left(\right. m , n \left.\right)\) nguyên dương sao cho cả hai biểu thức đều nguyên dương gồm:
- \(\left(\right. 1 , 1 \left.\right)\)
- \(\left(\right. 7 , 5 \left.\right)\)
Bạn có thể tìm thêm bằng cách thử các giá trị \(a , b \in \mathbb{Z}^{+}\) nhỏ, dùng công thức:
\(n = \frac{2 b + 3}{9 - 4 a b} , m = \frac{2 a n + 1}{3}\)