Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=18^2+20^2=724\)
hay \(BC=2\sqrt{181}cm\)
Vậy: \(BC=2\sqrt{181}cm\)
1: Xét ΔHBA vuông tại H và ΔABC vuông tại A có
\(\widehat{B}\) chung
Do đó:ΔHBA\(\sim\)ΔABC
2: \(BC=\sqrt{AB^2+AC^2}=15\left(cm\right)\)
\(AH=\dfrac{AB\cdot AC}{BC}=7.2\left(cm\right)\)
\(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
AK=6*8/10=4,8cm
\(KB=\dfrac{6^2}{10}=3.6\left(cm\right)\)
KC=10-3,6=6,4cm
Xet ΔABC có MK//AB
nên MK/AB=CK/CB
=>MK/6=6,4/10=16/25
=>MK=96/25(cm)
Lời giải:
a)
Áp dụng định lý Pitago:
$BC=\sqrt{AB^2+AC^2}=\sqrt{30^2+40^2}=50$ (cm)
$AH=\frac{2S_{ABC}}{BC}=\frac{AB.AC}{BC}=\frac{30.40}{50}=24$ (cm)
$BH=\sqrt{AB^2-AH^2}=\sqrt{30^2-24^2}=18$ (cm)
b)
Theo tính chất tia phân giác:
$\frac{AD}{DC}=\frac{AB}{BC}=\frac{30}{50}=\frac{3}{5}$
$\Rightarrow \frac{AD}{AC}=\frac{3}{8}$
$\Leftrightarrow \frac{AD}{40}=\frac{3}{8}$
$\Rightarrow AD=15$ (cm)
$DC=AC-AD=40-15=25$ (cm)
b,- Ta có : AM là đường trung tuyến của tam giác vuông ABC .
=> AM = BM = CM = KM .
Xét \(\Delta MKC\) và \(\Delta MAB\) có :
\(\left\{{}\begin{matrix}BM=MC\\AM=MK\\\widehat{BMA}=\widehat{KMC}\end{matrix}\right.\)
=> \(\Delta MKC\) = \(\Delta MAB\) ( c - g - c )
- Xét tứ giác ABKC có :
AM = BM = CM = KM và tam giác ABC vuông tại A .
=> Tứ giác ABKC là hình chữ nhật.
=> KC vuông góc với AC .
c, - Áp dụng định lý pitago vào tam giác ABC vuông tại A :
\(BC=\sqrt{AB^2+AC^2}=13\left(cm\right)\)
Ta có : \(AM=\dfrac{1}{2}BC=\dfrac{13}{2}\)
* Sửa '' 5A '' => '' 5a ''
\(\text{Theo đề ra:}\)\(3AB=2BC\)
\(\Rightarrow BC=\frac{3}{2}AB\)
\(\text{Áp dụng định lý Py-ta-go, ta có: }\)
\(AB^2+AC^2=BC^2\)
\(\Rightarrow AB^2+25a^2=\frac{9}{4}AB^2\)
\(\Rightarrow25a^2=\frac{5}{4}AB^2\)
\(\Rightarrow AB^2=20a^2\)
\(\Rightarrow AB=2\sqrt{5a}\)