Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 : \(2\left(3x-1\right)-3x=10\)
\(\Leftrightarrow6x-2-3x=10\)
\(\Leftrightarrow3x=12\)
\(\Leftrightarrow x=4\)
Vậy...................
b ) \(\dfrac{x+1}{x}+1=\dfrac{3x-1}{x+1}+\dfrac{1}{x\left(x+1\right)}\left(1\right)\)
ĐKXĐ : \(x\ne0;x\ne-1\)
\(\left(1\right)\Rightarrow\left(x+1\right)^2+x\left(x+1\right)=x\left(3x-1\right)+1\)
\(\Leftrightarrow x^2+2x+1+x^2+x-3x^2+x-1=0\)
\(\Leftrightarrow-x^2+4x=0\)
\(\Leftrightarrow x\left(-x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(KTMĐKXĐ\right)\\x=4\left(TMĐKXĐ\right)\end{matrix}\right.\)
Vậy .......................
c ) \(\dfrac{2x+1}{3}-\dfrac{3x-2}{2}>\dfrac{1}{6}\)
\(\Leftrightarrow2\left(2x+1\right)-3\left(3x-2\right)>1\)
\(\Leftrightarrow4x+2-9x+6>1\)
\(\Leftrightarrow-5x>-7\)
\(\Leftrightarrow x< \dfrac{7}{5}.\)
Vậy .......
a ) \(A=\left(\dfrac{x^2-3}{x^2-9}+\dfrac{1}{x-3}\right):\dfrac{x}{x+3}.ĐKXĐ:x\ne3;x\ne-3\)
\(A=\left(\dfrac{x^2-3}{\left(x-3\right)\left(x+3\right)}+\dfrac{1}{\left(x-3\right)}\right).\dfrac{x+3}{x}\)
\(A=\dfrac{x^2-3x+x^2+3x}{x\left(x-3\right)\left(x+3\right)}.\dfrac{x+3}{x}\)
\(A=\dfrac{x+1}{x-3}\)
b ) \(\left|A\right|=3.\) thì x là ?
\(\left|\dfrac{x+1}{x-3}\right|=3\)
Kẻ bảng ra làm nha :D
Điều kiện:
\(x-1\ne0\Rightarrow x\ne1\)
\(x^3+x\ne0\Leftrightarrow x\ne0\)
Ta có: \(\left(x-1\right)^2\ge0\) \(\Leftrightarrow x^2-2x+1\ge0\)\(\Leftrightarrow x^2+1\ge2x\).\(\left(1\right)\)
\(\left(y-2\right)^2\ge0\Leftrightarrow y^2-4y+4\ge0\Leftrightarrow x^2+4\ge4y\).\(\left(2\right)\)
\(\left(z^2-9\right)\ge0\Leftrightarrow z^2-6z+9\ge0\Leftrightarrow z^2+9\ge6z\).\(\left(3\right)\)
Từ \(\left(1\right),\left(2\right)\)và \(\left(3\right)\) nhân vế theo vế ta được:
\(\left(x^2+1\right).\left(y^2+4\right).\left(z^2+9\right)\ge48xyz\)
mà theo đề ta có:\(\left(x^2+1\right).\left(y^2+4\right).\left(z^2+9\right)=48xyz\)
nên \(\left\{{}\begin{matrix}x^2+1=2x\\y^2+4=4y\\z^2+9=6z\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\\z=3\end{matrix}\right.\)
Thay \(x=1;y=2;z=3\)vào biểu thức A ta được:
\(A=\dfrac{x^3+y^3+z^3}{\left(x+y+z\right)^2}=\dfrac{1+8+27}{\left(1+2+3\right)^2}=1\)
Vậy giá trị của biểu thức \(A=\dfrac{x^3+y^3+z^3}{\left(x+y+z\right)^2}\)là 1.
Câu 1:
a) 2x2(3x2 - xy - \(\frac{3}{2}\)y2)
= 6x4 - 2x3y - 3x2y2
b) (16x4y3 - 20x2y3 - 4x4y4) : (4x2y2)
= 4x2y - 5y - x2y2 = - x2y2 + 4x2y - 5y
Câu 2:
a) 5x(3 - 2x) - 7(2x - 3)
= 5x(3 - 2x) + 7(3 - 2x)
= (3 - 2x)(5x + 7)
b) x3 - 4x2 + 4x
= x(x2 - 4x + 4)
= x(x - 2)2
c) x2 + 5x + 6
= x2 + 2x + 3x + 6
= x(x + 2) + 3(x + 2)
= (x + 2)(x + 3)
52 + 122 =132 => tg vuong
Sabc = 12.5/2 = 30cm2
( toán violympic cho rất thông minh, mới nhìn là mk phát hiện ra r , thui mk đi học đây)
Tam giác ABC có 3 cạnh của tam giác ứng với định lí Py-ta-go=> ABC là tam giác vuông
\(S_{ABC}=\frac{5.12}{2}=30cm^2\)
\(\left(1+\dfrac{1}{3}\right)\left(1+\dfrac{1}{8}\right)\left(1+\dfrac{1}{15}\right)...\left(1+\dfrac{1}{120}\right)\)
= \(\dfrac{4}{3}.\dfrac{9}{8}.\dfrac{16}{15}.....\dfrac{121}{120}\)
= \(\dfrac{2^2}{1.3}+\dfrac{3^2}{2.4}.\dfrac{4^2}{3.5}.....\dfrac{11^2}{10.12}\)
= \(\dfrac{2}{1}.\dfrac{2}{3}.\dfrac{3}{2}.\dfrac{3}{4}.\dfrac{4}{3}.\dfrac{4}{5}.....\dfrac{11}{10}.\dfrac{11}{12}\)
= \(\dfrac{2}{1}\left(\dfrac{2}{3}.\dfrac{3}{2}\right)\left(\dfrac{3}{4}.\dfrac{4}{3}\right)...\left(\dfrac{10}{11}.\dfrac{11}{10}\right).\dfrac{11}{12}\)
= \(2.\dfrac{11}{12}\)
= \(\dfrac{11}{6}\)
\(\left(1+\frac{1}{3}\right)\left(1+\frac{1}{8}\right)\left(1+\frac{1}{15}\right)....\left(1+\frac{1}{120}\right)\\ =\frac{4}{3}.\frac{9}{8}.\frac{16}{15}...\frac{121}{120}\\ =\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}....\frac{11^2}{10.12}\\ \)
\(=\frac{2.11}{1.12}=\frac{11}{6}\)
mai mk giúp cho. hôm nay mik bận làm đề cương rồi