K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 4 2017

Ta có

abcdeg = ab.10000+cd.100+eg

              =9999.ab​​+ab+99.cd+cd+eg

              =(9999.ab+99.cd)+(ab+cd+eg)

Vì 9999.ab+99.cd chia hết cho 11, ab+cd+eg chia hết cho 11vậy ababcdeg chia hết cho 11

1 tháng 3 2018

Ta có : abcdeg = ab10000 + cd100 + eg 

= ( ab + cd + eg) + ( ab9999 + cd99 + eg)

= (ab + cd + eg ) + 11( ab909 + cd9 +eg ) chia hết cho 11

=> abcdeg chia hết cho 11

10 tháng 10 2015

1/abcd chia hết cho 101 thì cd = ab, abcd = abab

Mà:

ab - ab = ab - cd = 0 (chia hết cho 101)

Ngược lại, ab - ab = cd - ab = 0 (chia hết cho 101)

2/n . (n+2) . (n+8)

n có 3 trường hợp:

TH1: n chia hết cho 3

Gọi tích đó là A.

A = n.(n+2).(n+8)

A = 3k.(3k+2).(3k+8)

=> A chia hết cho 3

TH2: n chia 3 dư 1

B = (3k+1).(3k+1+2).(3k+1+8)

B = (3k+1).(3k+3).(3k+9)

Vì 3k chia hết cho 3 và 3 chia hết cho 3 nên 3k+3 chia hết cho 3 => B chia hết cho 3

TH3: n chia 3 dư 2

TH này ko hợp lý, bạn nên xem lại đề

n . (n+4) . (2n+1)

bạn giải tương tự nhé

 

 

 

12 tháng 4 2016

dấu hiệu chia hết cho 11: một số chia hết cho 11 khi và chỉ khi :tổng các chữ số hàng chẵn-tổng các chữ số hàng lẻ chia hết cho 11

theo giả thiết:/ab+/cd+/eg = 10a + b + 10c + d + 10e + g = 11(a+c+e) + (b+d+g) - (a+c+e) chia hết cho 11

suy ra: (b+d+g) - (a+c+e) chia hết cho 11

suy ra : /abcdeg chia hết cho 11

12 tháng 4 2016

Ta có : abcdeg=10000ab + 100cd + eg

                     = 9999ab + ab + 99cd+ cd + eg

                     = 9999ab+99cd+(ab+cd+eg)

Vì 9999ab+99cd chia hết cho 11 và đầu bài cho ab+cd+eg chia hết cho 11

=>abcdeg chie hết cho 11

27 tháng 7 2015

\(abcd\) chia hết cho 101 

<=> abcd = 101k (k \(\ge10\) ; k \(\in\) N)

<=> ab = cd

=> ab - cd = 0

điều ngược lại là ab - cd = 0 thì abcd chia hết cho 101 cũng đúng.

=> điều phải chứng minh

6 tháng 11 2015

abcdeg = ab . 10000 + cd .100+ eg 

           = ab . 9999 + 1 . ab + cd . 99 + cd + eg 

           = ab . 11 . 909 + cd . 11 .9 + (ab + cd + eg)

           = 11 . (ab + 909 + cd . 9 ) + (ab + cd + eg)

Vì 11 . (ab . 909 + cd . 9) chia hết cho 11 

            ab + cd + eg chia hết cho 11 

nên abcdeg chia hết cho 11

Vậy nếu ab + cd + eg chia hết cho 11 thì abcdeg chia hết cho 11 

21 tháng 3 2017

bạn thiếu (ĐPCM)

a. Vì abcdeg chia hết cho 11 ( giả thiết b ) => abcdeg chia hết cho 11

b. Vì ab+cd+eg chia hết cho 11 ( giả thiết đầu bài ) => ab+cd+eg chia hết cho 11

Mình làm đúng đó

Đảm bảo 100%

Ủng hộ nha

abcd = ab x 100 + cd = ab x 101 - ab + cd

Vì abcd và ab x 101 chia hết cho 101 nên - ab + cd chia hết cho 101 \(\Rightarrow\)- ( ab - cd ) chia hết cho 101 \(\Rightarrow\)ab - cd chia hết cho 101 ( ĐPCM )

Ngược lại, ab - cd chia hết cho 101 nên - ab + cd chia hết cho 101. Mà ab x 101 chia hết nên abcd chia hết cho 101 ( ĐPCM )