Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ĐKXĐ:
x³ - 1 khác 0
x khác 1
b) A = (5x² + 5x + 5)/(x³ - 1)
= 5(x² + x + 1)/[(x - 1)(x² + x + 1)]
= 5/(x - 1)
Thay x = 7 vào A, ta được:
A = 5/(7 - 1)
= 5/6
\(=\left(x-y\right)^2-9=\left(x-y-3\right)\left(x-y+3\right)\)
\(x^2-2xy-9+y^2=\left(x^2-2xy+y^2\right)-9=\left(x-y\right)^2-3^2=\left(x-y-3\right).\left(x-y+3\right)\)
\(a,\Delta ABC\text{ cân }A\Rightarrow AH\text{ cũng là trung tuyến}\\ \left\{{}\begin{matrix}BH=HC\\AH=HE\end{matrix}\right.\Rightarrow ABEC\text{ là hbh}\\ \text{Mà }AE\bot BC=\left\{H\right\}\Rightarrow ABEC\text{ là hình thoi}\\ b,\text{Vì }D,F\text{ là trung điểm }AH,HC\Rightarrow DF\text{ là đtb }\Delta AHC\\ \Rightarrow DF=\dfrac{1}{2}AC\\ \text{Xét }\Delta AHC\bot H\Rightarrow HI=\dfrac{1}{2}AC\left(\text{trung tuyến ứng cạnh huyền }\right)\\ \Rightarrow DF=HI\)
a: Xét tứ giác ABEC có
H là trung điểm của AE
H là trung điểm của BC
Do đó: ABEC là hình bình hành
mà AB=AC
nên ABEC là hình thoi
\(\dfrac{2}{x}=\dfrac{x}{x+1}\left(ĐKXĐ:x\ne0;x\ne-1\right)\)
\(\Leftrightarrow\dfrac{2\left(x+1\right)}{x\left(x+1\right)}=\dfrac{x^2}{x\left(x+1\right)}\)
\(\Rightarrow x^2=2x+2\)
\(\Leftrightarrow x^2-2x-2=0\)
\(\Leftrightarrow x^2-2x+1-3=0\)
\(\Leftrightarrow\left(x-1\right)^2-3=0\)
\(\Leftrightarrow\left(x-1-\sqrt{3}\right)\left(x-1+\sqrt{3}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1-\sqrt{3}=0\\x-1+\sqrt{3}=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1+\sqrt{3}\left(nhận\right)\\x=1-\sqrt{3}\left(nhận\right)\end{matrix}\right.\)
-Vậy \(S=\left\{1+\sqrt{3};1-\sqrt{3}\right\}\)
\(\left(x^2+x-2\right)^2=3\left(x^4+x^2+1\right)\)
\(\Leftrightarrow\left[\left(x-1\right)\left(x+2\right)\right]^2=3\left(x^4+x^2+1\right)\)
\(\Leftrightarrow\left(x-1\right)^2\left(x+2\right)^2=3\left(x^4+x^2+1\right)\)
\(\Leftrightarrow x^4+4x^3+4x^2-2x^3-8x^2-8x+x^2+4x+4=3x^4+3x^2+3\)
\(\Leftrightarrow x^4+2x^3-3x^2-4x+4-3x^4-3x^2-3=0\)
\(\Leftrightarrow-2x^4+2x^3-6x^2-4x+1=0\)