Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giải hpt: \(\hept{\begin{cases}x^2+2y-4x=0\\4x^2-4xy^2+y^4-2y+4=0\end{cases}}\)
Cộng hai vế lại với nhau ta có:
\(4x^2-4xy^2+y^4+x^2-4x+4=0\)
\(\Leftrightarrow\left(2x-y\right)^2+\left(x-2\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}2x-y^2=0\\x-2=0\end{cases}\Rightarrow\hept{\begin{cases}x=2\\y^2=4\end{cases}}}\)
\(\Rightarrow\hept{\begin{cases}x=2;y=2\left(tm\right)\\x=2;y=-2\end{cases}}\)
Thay x,y vào pt và tính
=> x=2 và y=2 thỏa mãn
=>(x;y)=(2;2) (t/m)
@Linh: Làm nhầm rồi
HPT\(\hept{\begin{cases}x^2+2y-4x=0\\4x^2-4xy^2+y^4-2y+4=0\end{cases}}\)
Cộng vế với vế của hai phương trình, ta được:
\(HPT\Leftrightarrow5x^2-4xy^2+y^2-4x+4=0\)
\(\Leftrightarrow\left(4x^2-4xy^2+y^2\right)+\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow\left(2x-y\right)^2+\left(x-2\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}2x-y=0\\x-2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2\\y=4\end{cases}}\)
Vậy \(\left(x;y\right)=\left(2;4\right)\)
Ta có hpt \(\left\{{}\begin{matrix}xy+3y-5x-15=xy\\2xy+30x-y^2-15y=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}5x=3y-15\\6\left(3y-15\right)-y^2-15y=0\end{matrix}\right.\)
Ta có pt (2) \(\Leftrightarrow3y-y^2-80=0\Leftrightarrow y^2-3y+80=0\left(VN\right)\)
=> hpy vô nghiệm
c) Ta có hpt \(\Leftrightarrow\left\{{}\begin{matrix}xy\left(x+y\right)\left(xy+x+y\right)=30\\xy\left(x+y\right)+xy+x+y=11\end{matrix}\right.\)
Đặt j\(xy\left(x+y\right)=a;xy+x+y=b\), ta có hpt
\(\left\{{}\begin{matrix}ab=30\\a+b=11\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}a=5;b=6\\a=6;b=5\end{matrix}\right.\)
với a=5;b=6, ta có \(\left\{{}\begin{matrix}xy\left(x+y\right)=5\\xy+x+y=6\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}xy=1;x+y=5\\xy=5;x+y=1\end{matrix}\right.\)
đến đây thì thế y hoặc x ra pt bậc 2, còn TH còn lại bn tự giải nhé !
ĐKXĐ: \(2x-y-1\ge0;x+2y\ge0\)
Đặt \(\sqrt{2x-y-1}=a;\sqrt{x+2y}=b\left(a,b\ge0\right)\). Khi đó ta có:
\(\left(2b^2-1\right)a=\left(2a^2-1\right)b\Leftrightarrow\left(a-b\right)\left(2ab+1\right)=0\)
\(\Leftrightarrow a=b\) hoặc \(2ab+1=0\)(loại vì \(a,b\ge0\))
Suy ra: \(\sqrt{2x-y-1}=\sqrt{x+2y}\Leftrightarrow x=3y+1\)
Pt đầu tiên trở thành: \(\left(3y+1\right)^2-5y^2-8y=3\)
\(\Leftrightarrow\left(y-1\right)\left(2y+1\right)=0\Leftrightarrow\orbr{\begin{cases}y=1\\y=-\frac{1}{2}\end{cases}}\)
+) Với \(y=1\Rightarrow x=4\Rightarrow\left(x;y\right)=\left(4;1\right)\)(tm)
+) Với \(y=-\frac{1}{2}\Rightarrow x=-\frac{1}{2}\Rightarrow\left(x;y\right)=\left(-\frac{1}{2};-\frac{1}{2}\right)\) (loại)
Vậy hpt có nghiệm duy nhất \(\left(x;y\right)=\left(4;1\right).\)
3/ \(\hept{\begin{cases}x^4+y^2=\frac{697}{81}\left(1\right)\\x^2+y^2+xy-3x-4y+4=0\left(2\right)\end{cases}}\)
Xét phương trình (2) ta có:
\(x^2+\left(y-3\right)x+y^2-4y+4=0\)
Để PT theo nghiệm x có nghiệm thì
\(\Delta=\left(y-3\right)^2-4.\left(y^2-4y+4\right)\ge0\)
\(\Leftrightarrow-3y^2+10y-7\ge0\)
\(\Leftrightarrow1\le y\le\frac{7}{3}\)
\(\Leftrightarrow1\le y^2\le\frac{49}{9}\)
Tương tự ta có:
\(0\le x\le\frac{4}{3}\)
\(\Leftrightarrow0\le x^4\le\frac{256}{81}\)
Từ đây ta có: \(x^4+y^2\le\frac{256}{81}+\frac{49}{9}=\frac{697}{81}\)
Dấu = xảy ra khi \(\hept{\begin{cases}x=\frac{4}{3}\\y=\frac{7}{3}\end{cases}}\)
Thế ngược lại hệ không thỏa mãn. Vậy hệ vô nghiệm
1/ Điều kiện \(\hept{\begin{cases}x\ge1\\y\ge0\end{cases}}\)\(\hept{\begin{cases}xy+x+y-x^2+2y^2=0\\x\sqrt{2y}-y\sqrt{x-1}=2x-2y\end{cases}}\)
Xét phương trình đầu ta có
\(xy+x+y-x^2+2y^2=0\)
\(\Leftrightarrow\left(x+y\right)\left(2y-x+1\right)=0\)
\(\Rightarrow x=1+2y\)
Thế vào pt dưới ta được
\(\sqrt{2y}\left(y+1\right)=2y+2\)
\(\Leftrightarrow\left(y+1\right)\left(\sqrt{2y}-2\right)=0\)
Tới đây tự làm tiếp nhé
\(\left\{{}\begin{matrix}\left(xy+x\right)\left(x^2+xy+x\right)=\left(x-1\right)\left(3x-1\right)\\xy+x=x^2-1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left(x^2-1\right)\left(2x^2-1\right)=\left(x-1\right)\left(3x-1\right)\\xy+x=x^2-1\end{matrix}\right.\)(1)
Nếu x=1 thì thay vào hệ dưới, tìm được y=-1
Nếu x\(\ne\)1 thì hệ (1) trở thành:\(\left\{{}\begin{matrix}\left(2x^2-1\right)\left(x+1\right)=3x-1\\xy+x=x^2-1\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}2x^3+2x^2-x-1=3x-1\\xy+x=x^2-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x\left(x^2+x-2\right)=0\\xy+x=x^2-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x\left(x-1\right)\left(x+2\right)=0\\xy+x=x^2-1\end{matrix}\right.\)\(\Leftrightarrow\)\(\left\{{}\begin{matrix}\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\\xy+x=x^2-1\end{matrix}\right.\)( vì x\(\ne\)1) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=0\\xy+x=x^2-1\end{matrix}\right.\\\left[{}\begin{matrix}x=-2\\xy+x=x^2-1\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=-\dfrac{5}{2}\end{matrix}\right.\)( vì với x=0 thì ko tìm đc y)
Vậy, hệ pt đã cho có các cặp nghiệm (x;y) là:(1;-1);(-2;\(-\dfrac{2}{5}\))