K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2023

ĐK: \(\left\{{}\begin{matrix}x\ne-y\\y\ge\dfrac{3}{2}\end{matrix}\right.\).

\(\left\{{}\begin{matrix}\dfrac{2x-y+3}{x+y}=1\\2x-\sqrt{2y-3}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2x-y+3}{x+y}-1=0\\2x-\sqrt{2y-3}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2x-y+3}{x+y}-\dfrac{x+y}{x+y}=0\\2x-\sqrt{2y-3}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-y+3-x-y=0\\2x-\sqrt{2y-3}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-2y+3=0\\2x-\sqrt{2y-3}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-\left(2y-3\right)=0\\2x-\sqrt{2y-3}=0\end{matrix}\right..\)

Đặt a = x, b = \(\sqrt{2y-3}\).

Hệ phương trình trở thành: \(\left\{{}\begin{matrix}a-b^2=0\\2a-b=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=b^2\\2b^2-b=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=b^2\\b\left(2b-1\right)=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=b^2\\\left[{}\begin{matrix}b=0\\b=\dfrac{1}{2}\end{matrix}\right.\end{matrix}\right.\left\{{}\begin{matrix}\left[{}\begin{matrix}a=0\\a=\dfrac{1}{4}\end{matrix}\right.\\\left[{}\begin{matrix}b=0\\b=\dfrac{1}{2}\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=0\\x=\dfrac{1}{4}\end{matrix}\right.\\\left[{}\begin{matrix}y=\dfrac{3}{2}\\2y-3=\dfrac{1}{4}\end{matrix}\right.\end{matrix}\right.\left\{{}\begin{matrix}\left[{}\begin{matrix}x=0\\x=\dfrac{1}{4}\end{matrix}\right.\\\left[{}\begin{matrix}y=\dfrac{3}{2}\\2y=\dfrac{13}{4}\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x=0\\x=\dfrac{1}{4}\end{matrix}\right.\\\left[{}\begin{matrix}y=\dfrac{3}{2}\\y=\dfrac{13}{8}\end{matrix}\right.\end{matrix}\right..\)

Vậy hệ phương trình có nghiệm (x;y) \(\in\) \(\left\{\left(0;\dfrac{3}{2}\right),\left(\dfrac{1}{4};\dfrac{13}{8}\right)\right\}\).

 

Bài 18:

a: Ta có: \(P=\left(\dfrac{\sqrt{a}}{2}-\dfrac{1}{2\sqrt{a}}\right)^2\cdot\left(\dfrac{\sqrt{a}-1}{\sqrt{a}+1}-\dfrac{\sqrt{a}+1}{\sqrt{a}-1}\right)\)

\(=\dfrac{\left(\sqrt{a}-1\right)^2\cdot\left(\sqrt{a}+1\right)^2}{4a}\cdot\dfrac{a-2\sqrt{a}+1-a-2\sqrt{a}-1}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\)

\(=\dfrac{\left(a-1\right)\cdot\left(-4\right)\cdot\sqrt{a}}{4a}\)

\(=\dfrac{-a+1}{\sqrt{a}}\)

b: Để P<0 thì -a+1<0

\(\Leftrightarrow-a< -1\)

hay a>1

c: Để P=-2 thì \(-a+1=-2\sqrt{a}\)

\(\Leftrightarrow-a+1+2\sqrt{a}=0\)

\(\Leftrightarrow a-2\sqrt{a}+1=2\)

\(\Leftrightarrow\left(\sqrt{a}-1\right)^2=2\)

\(\Leftrightarrow\sqrt{a}-1=\sqrt{2}\)

hay \(a=3+2\sqrt{2}\)

Bài 17:

a: Ta có: \(P=\dfrac{a\sqrt{a}-1}{a-\sqrt{a}}-\dfrac{a\sqrt{a}+1}{a+\sqrt{a}}+\left(\sqrt{a}-\dfrac{1}{\sqrt{a}}\right)\left(\dfrac{\sqrt{a}+1}{\sqrt{a}-1}+\dfrac{\sqrt{a}-1}{\sqrt{a}+1}\right)\)

\(=\dfrac{a+\sqrt{a}+1-a+\sqrt{a}-1}{\sqrt{a}}+\dfrac{a-1}{\sqrt{a}}\cdot\dfrac{a+2\sqrt{a}+1+a-2\sqrt{a}+1}{a-1}\)

\(=2+\dfrac{2a+2}{\sqrt{a}}\)

\(=\dfrac{2a+2\sqrt{a}+2}{\sqrt{a}}\)

2 tháng 9 2021

hình bé quá

2 tháng 9 2021

sin 650=cos 350
\(cos70^0=sin30^0\)
\(tan80^0=cot20^0\)
\(cot68^0=tan32^0\)

21 tháng 7 2016

ĐK : \(x\ge-1\)

pt<=> \(\left(x+1\right)\left(x^2+1\right)=1\)(bình phương 2 vế  ko âm)

<= .\(x^3+x^2+x+1=1\)

<=> \(x\left(x^2+x+1\right)=0\)

<=> \(\orbr{\begin{cases}x=0\\x^2+x+1=0\end{cases}}\)(vô lí )

vậy x=0 

21 tháng 12 2021

a: Xét hình thang ADCB có

O là trung điểm của AB

OM//AD//CB

Do đó: M là trung điểm của CD

hay MC=MD

22 tháng 12 2021

thanjk nhá

 

7 tháng 11 2021

ĐK: \(x\ge\dfrac{5}{3}\)

Ta có: \(\sqrt{2x+5}=2+\sqrt{3x-5}\)

      \(\Leftrightarrow2x+5=4+3x-5+4\sqrt{3x-5}\)

      \(\Leftrightarrow6-x=4\sqrt{3x-5}\)                    ĐK: x≤6

      \(\Leftrightarrow36-12x+x^2=48x-80\)

      \(\Leftrightarrow x^2-60x+116=0\)

      \(\Leftrightarrow\left(x-2\right)\left(x-58\right)=0\)

      \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=58\end{matrix}\right.\)

So với điều kiện thì phương trình có nghiệm duy nhất là x = 2

7 tháng 11 2021

\(ĐK:x\ge\dfrac{5}{3}\\ PT\Leftrightarrow\left(\sqrt{2x+5}-3\right)-\left(\sqrt{3x-5}-1\right)=0\\ \Leftrightarrow\dfrac{2x-4}{\sqrt{2x+5}+3}-\dfrac{3x-6}{\sqrt{3x-5}+1}=0\\ \Leftrightarrow\left(x-2\right)\left(\dfrac{2}{\sqrt{2x+5}+3}-\dfrac{3}{\sqrt{3x-5}+1}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\left(tm\right)\\\dfrac{2}{\sqrt{2x+5}+3}=\dfrac{3}{\sqrt{3x-5}+1}\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow2\sqrt{3x-5}+2=3\sqrt{2x+5}+9\\ \Leftrightarrow2\sqrt{3x-5}=7+3\sqrt{2x+5}\\ \Leftrightarrow4\left(3x-5\right)=49+9\left(2x+5\right)+42\sqrt{2x+5}\\ \Leftrightarrow12x-20=49+18x+45+42\sqrt{2x+5}\\ \Leftrightarrow-6x-144=42\sqrt{2x+5}\)

Vì \(x\ge\dfrac{5}{3}>0\Leftrightarrow-6x-144< 0< 42\sqrt{2x+5}\)

Do đó (1) vô nghiệm

Vậy PT có nghiệm \(x=2\)

3 tháng 8 2021

Áp dụng tỉ số lượng giác của góc nhọn vào \(\Delta MHP\), ta có:

\(\cos30\text{°}=\dfrac{MH}{8}\Rightarrow MH=8.\cos30\text{°}=4\sqrt{3}\left(cm\right)\)

Mặt khác, \(\text{∠}MNP=90\text{°}-30\text{°}=60\text{°}\)

Áp dụng tí số lượng giác của góc nhọn vào \(\Delta MHN\), ta có:

\(\tan60\text{°}=\dfrac{4\sqrt{3}}{NH}\Rightarrow NH=4\sqrt{3}.\tan60\text{°}=12\left(cm\right)\)

AH
Akai Haruma
Giáo viên
3 tháng 8 2021

Lời giải:

Xét tam giác $MHP$ vuông tại $H$ thì:

$\frac{MH}{MP}=\sin P=\sin 30^0=\frac{1}{2}$

$\Rightarrow MH=\frac{MP}{2}=4$ (cm)

Theo định lý Pitago:

$HP=\sqrt{MP^2-MH^2}=\sqrt{8^2-4^2}=4\sqrt{3}$

Theo hệ thức lượng trong tam giác vuông:

$MH^2=NH.HP$

$\Leftrightarrow 4^2=4\sqrt{3}.NH$

$\Leftrightarrow NH=\frac{4\sqrt{3}}{3}$ (cm)

3 tháng 8 2021

mik khoanh đỏ x, y, z rồi nhé:v

undefined

3 tháng 8 2021

Có nghĩa là giải ra chứ ko phải tìm thế đâu