K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 11 2021

\(a,\Rightarrow2A=2+2^2+...+2^{2011}\)

\(\Rightarrow2A-A=2+2^2+...+2^{2011}-2^0-2-..-2^{2010}\)

\(\Rightarrow A=2^{2011}-1=B\)

\(b,A=2019.2011=\left(2010-1\right)\left(2010+1\right)=\left(2010-1\right).2010+\left(2010-1\right)=2010^2-2010+2010-1=2010^2-1< 2010^2=B\)

 

18 tháng 11 2021

\(a,\Rightarrow2A=2^1+2^2+...+2^{2011}\\ \Rightarrow2A-A=A=2^{2011}-2^0=2^{2011}-1=B\)

\(b,A=\left(2010-1\right)\left(2010+1\right)=2010^2+2010-2010-1=2010^2-1< 2010^2=B\)

30 tháng 11 2019

a, \(A=2^0+2^1+2^2+...+2^{2010}\)

\(=>2A=2^1+2^2+2^3+...+2^{2011}\)

\(=>2A-A=\left(2^1+2^2+2^3+...+2^{2011}\right)-\left(2^0+2^1+2^2+...+2^{2010}\right)\)

\(=>2A=2^{2011}-2^0=2^{2011}-1\)

Vì \(2^{2011}-1=2^{2011}-1\)

\(=>A=B\)

30 tháng 11 2019

a) Ta có : A=1+2+22+...+22010

              2A=2+22+23+...+22011

\(\Rightarrow\)  2A-A=(2+22+23+...+22011)-(1+2+22+...+22010)

\(\Rightarrow\)       A=22011-1

Mà B=22011-1

\(\Rightarrow\)A=B

Vậy A=B.

b) Ta có : A=2009.2011

               B=20102=2010.2010

\(\Rightarrow\)A=2009.2010+2009

         B=2009.2010+2010

Vì 2009<2010 nên 2009.2010+2009<2009.2010+2010

hay A<B

Vậy A<B.

15 tháng 12 2016

c, A=(103)10=100010

B=(210)10=102410

=>A<B

e, A=(33)150=27150

B=(52)150=25150

=>A>B

 nhớ k hộ mk cái hihi

15 tháng 12 2016

a,A=20+21+22+23+...+22010 và B=22011-1

A=B

b, A=2009×2011 và B=20102

A<B

c, A=1030và B=2100

A<B

d, A=333444  và B=444333

A>B

e, A=3450 và B=5300

A>B

cân chi tiết xẽ có

Moi người có thể làm 1 ý nha!Mình đều k hết!

a, \(A=2^0+2^1+2^2+...+2^{2010}\)

\(\Leftrightarrow2A=2^1+2^2+2^3+...+2^{2011}\)

\(\Leftrightarrow2A-A=A=2^{2011}-2^0=2^{2011}-1\)

\(\Rightarrow A=B\)

b, \(B=2010^2=2010\times2010\)

Ta có : \(2009\times2011=2009\times\left(2010+1\right)=2009\times2010+2009\)

            \(2010\times2010=2010\times\left(2009+1\right)\)\(=2010\times2009+2010\)

 \(2009< 2010\)

\(\Rightarrow A< B\)

c , Ta có : \(A=333^{444}=\left(333^4\right)^{111}\)

                \(B=444^{333}=\left(444^3\right)^{111}\)

Cả A và B đều có cùng số mũ 111 nên ta so sánh \(333^4\)và \(444^3\)

Ta thấy : \(333^4=\left(3\times111\right)^4=3^4\times111^4=81\times111^4\)

              \(444^3=\left(4\times111\right)^3=4^3\times111^3=64\times111^3\)

Vì \(81\times111^4>64\times111^3\)

\(\Rightarrow A>B\)

d , Ta có : \(A=10^{30}=\left(10^3\right)^{10}=1000^{10}\)

                 \(B=2^{100}=\left(2^{10}\right)^{10}=1024^{10}\)

\(\Rightarrow B>A\)

e , Ta có : \(A=3^{450}=\left(3^9\right)^{50}=19683^{50}\)

                \(B=5^{300}=\left(5^6\right)^{50}=15625^{50}\)

\(\Rightarrow A>B\) 

_Chúc bạn học tốt_

1 tháng 6 2018

a) Ta có :

A = 20  + 2 + 22 + ... + 22010

2A = 2 + 22 + 23 + ... + 22011

2A - A = (  2 + 22 + 23 + ... + 22011 ) - ( 20  + 2 + 22 + ... + 22010 )

A = 22011 - 20 = 22011 - 1 = B

b) A = 2009 . 2011 = ( 2010 - 1 ) . 2011 = 2010 . 2011 - 2011

B = 20102 = 2010 . 2010 = ( 2011 - 1 ) . 2010 = 2011 . 2010 - 2010

Ta thấy 2010 . 2011 - 2011 < 2011 . 2010 - 2010 nên A < B

c) Ta có : 333444 = ( 3334 )111 ; 444333 = ( 4443 )111

Lại có : 3334 = ( 3 . 111 )4 = 34 . 1114 = 81 . 1114 ; 4443 = ( 4 . 111 )3 = 43 . 1113 = 64 . 1113

Ta thấy 81 . 1114 > 64 . 1113 nên A > B

d) A = 1030 = ( 103 )10 = 100010 ; B = 2100 = ( 210 )10  = 102410

vì 100010 < 102410 nên A < B

e) A = 3450 = ( 33 )150 = 27150

B = 5300 = ( 52 )150 = 25150

vì 27150 > 25150 nên A > B

31 tháng 8 2021

a) A = 20 + 21 + 22 + 23 + ... + 22010

=> 2A = 21 + 22 + 23 + ... + 22010 + 22011

=> 2A - A = (21 + 22 + 23 + ... + 22010 + 22011) - (20 + 21 + 22 + 23 + ... + 22010)

A = 21 + 22 + 23 + ... + 22010 + 22011 - 20 - 21 - 22 - 23 - ... - 22010

= 22011 - 1 = B

Vậy A = B

b) A = 2009 . 2011 = 2009 . (2010 + 1) = 2009 . 2010 + 2009

B = 20102 = 2010 . 2010 = (2009 + 1) . 2010 = 2009 . 2010 + 2010

Mà 2009 . 2010 + 2009 < 2009 . 2010 + 2010 nên A < B

c) A = 1030 = (103)10 = 100010

B = 2100 = (210)10 = 102410

Mà 102410 > 100010 A > B

d) A = 333444 = (3334)111 = [(3.111)4]111 = (34.1114)111 = (81 . 1114)111

B = 444333 = (4443)111 = [(4.111)3]111 = (43.1113)111 = (64 . 1113)111

Mà (81 . 1114)111 > (64 . 1113)111 nên A > B

e) A = 3450 = (33)150 = 27150

B = 5300 = (52)150 = 25150

Mà 27150 > 25150 nên A > B

6 tháng 8 2021

a) \(A=2^0+2^1+2^2+2^3+...+2^{210}\)và \(B=2^{2011}-1\)

Ta có :

\(2A=2^1+2^2+2^3+2^4+...+2^{2011}\)

\(2A-A=\left(2^1+2^2+2^3+2^4+...+2^{2011}\right)-\left(2^0+2^1+2^2+2^3+2^4+....+2^{2010}\right)\)

\(A=2^{2011}-1\)

Vậy A = B

6 tháng 8 2021

b) \(A=2009.2011\)và \(B=2010^2\)

Ta có :

\(A=2009.2011\)

\(A=2009.\left(2010+1\right)\)

\(A=2009.2010+2009\)

và \(B=2010^2=2010.2010\)

\(B=\left(2009+1\right).2010\)

\(B=2009.2010+2010\)

Vậy A < B

9 tháng 1 2018

b) A = 2009 . 2011 

    A = 2009 . ( 2010 + 1 )

    A = 2009 . 2010 + 2009

B = 20102

B = 2010 . 2010

B = ( 2009 + 1 ) . 2010

B = 2009 . 2010 + 2010

Mà 2009 . 2010 + 2009 < 2009 . 2010 + 2010

Vậy A < B

d tương tự

c) 52n và 25n

52n = 25n

25n = 32n

Mà 25< 32n

Vậy 52n < 25n

a) A = 2+ 2+ 2+ 2+ ............ + 22010

2A = 2+ 2+ 2+ 24 + .............. + 22011

2A - A = ( 2+ 2+ 2+ 24 + ............... + 22011 ) - ( 2+ 2+ 22 + 2+ ................ + 22010 )

A = 22011 - 1

Mà 22011 - 1 = 22011 - 1

Vậy A = B

9 tháng 1 2018

b) Ta có A=2009.2011=2009(2010+1)=2009.2010+2009

              B=20102=2010.2010=(2009+1)2010=2009.2010+2010

Mà 2009.2010+2009<2009.2010+2010

Nên A<B

1 tháng 1 2017

a) \(A=2^0+2^1+2^2+...+2^{2010}\)

\(\Rightarrow2A=2^1+2^2+2^3+...+2^{2011}\)

\(\Rightarrow2A-A=\left(2^1+2^2+2^3+...+2^{2011}\right)-\left(2^0+2^1+2^2+...+2^{2010}\right)\)

\(\Rightarrow A=2^{2011}-2^0\)

\(\Rightarrow A=2^{2011}-1\)

\(2^{2011}-1=2^{2011}-1\) nên \(A=B\)

Vậy A = B

b) Ta có: \(A=2009.2011=2009.\left(2010+1\right)=2009.2010+2009\)

\(B=2010^2=\left(2009+1\right).2010=2009.2010+2010\)

\(2009.2010+2009< 2009.2010+2010\) nên A < B

Vậy A < B

1 tháng 1 2017

\(A=2^0+2^1+2^2+2^3+....+2^{2010}\)

\(2.A=2\left(2^0+2^1+2^2+2^3+....+2^{2010}\right)\)

\(2.A=2.2^0+2.2+2.2^2+2.2^3+....+2.2^{2010}\)

\(2.A=2+2^2+2^3+2^4+....+2^{2011}\)

\(2A-A=\left(2+2^2+2^3+2^4+....+2^{2011}\right)-\left(2^0+2^1+2^2+2^3+....+2^{2010}\right)\)

\(A=\left(2-2^1\right)+\left(2^2-2^2\right)+\left(2^3-2^3\right)+....+\left(2^{2010}-2^{2010}\right)+2^{2011}-2^0\)

\(A=0+0+0+....+0+2^{2011}-2^0\)

\(A=2^{2011}-2^0\)

\(A=2^{2011}-1\)

\(A=2^{2011}-1\) ; \(B=2^{2011}-1\)

\(=>A=B\)

Vậy \(A=B\)

b) \(A=2009.2001\)

\(A=\left(2010-1\right)\left(2010+1\right)\)

\(A=\left(2010-1\right).2010+\left(2010-1\right).1\)

\(A=2010.2010-2010.1+1.2010-1.1\)

\(A=2010^2-2010+2010-1\)

\(A=2010^2+0-1\)

\(A=2010^2-1\)

\(A=2010^2-1\) ; \(B=2010^2\)

\(=>A< B\)

Vậy \(A< B\)

22 tháng 12 2016

a) ta có: x+16= (x+1)+15

mà x+1 chia hết cho x+1

suy ra 15 chia hết cho x+1

suy ra x+1 thuộc Ư(15)

Ư(15)= 1;3;5;15

TH1: x+1=1 suy ra x=0

TH2: x+1=3 suy ra x=2

TH3: x+1 = 5 suy ra x =4

TH4 x+1 = 15 suy ra x=14

Vậy x=0;2;4 hoặc 14

b) x lớn nhất và 36;45;18 chia hết cho x

suy ra x thuộc ƯCLN(36;45;18)

Ta có: 36= 3^2.2^2

45= 5.3^2

18=3^2.2

suy ra ƯCLN(36;45;18) = 3^2=9

suy ra x=9

Vậy x=9

c) 150;84;30 chia hết cho x suy ra x thuộc ƯC (150;84;30)

ta có: 150=5^2.3.2

84=7.3.2^2

30=5.3.2

suy ra ƯCLN(150;84;30)=2.3=6

Ư(6)= x nên x nhận các giá trị là 1;2;3;6

mà 0<x<16 nên x =1;2;3;6

Vậy x = 1;2;3;6

d) 10^15+8 = 100....000 + 8 ( có 15 số 0)

                  = 100....0008

Vì tận cùng là 8 nên 10^15+8 chia hết cho 2

Vì tổng các chữ số là 9 nên 10^15 chia hết cho 9

Vậy 10615 chia hết cho 2 và 9

b2) Nhóm 2 số 1 cặp, ta có:

A= 2.(1+2) + 2^3 . (1+2) + .....+ 2^2009. (1+2)

A= 2.3+2^3.3+...+2^2009.3

A= 3. ( 2+2^3+...+2^2009) chia hết cho 3

Vậy A chia hết cho 3

Nhóm 3 số 1 cặp

A= 2.(1+2+2^2) + 2^4.(1+2+2^2)+....+2^2008. ( 1+2+2^2)

A= 2.7+2^3.7+...+2^2008.7

A= 7. (2+2^4+...+ 2^2008) chia hết cho 7

Vậy A chia hết cho 7

b) 2.A= 2.(1+2+2^2+...+2^2010)

2.A= 2+2^2+2^3+...+2^2010+2011

2.A - A = (2+2^2+2^3+...+2^2011) - (1+2+2^2+...+2^2010)

1.A = 2^2011 - 1

Ta thấy: A= 2^2011-1           B= 2^2011-1

suy ra A=B

Vậy A=B

c) A<B

22 tháng 12 2016

b1)     a)x=2;b)x=9      b2)ko