Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Nếu $x+y+z=0$ thì:
$\frac{x+y-z}{z}=\frac{-z-z}{z}=-2$
$\frac{y+z-x}{x}=\frac{-x-x}{x}=-2$
$\frac{z+x-y}{y}=\frac{-y-y}{y}=-2$
(thỏa mãn đkđb)
Khi đó:
$P=(1+\frac{x}{y})(1+\frac{y}{z})(1+\frac{z}{x})=\frac{(x+y)(y+z)(z+x)}{xyz}$
$=\frac{(-z)(-x)(-y)}{xyz}=\frac{-xyz}{xyz}=-1$
Nếu $x+y+z\neq 0$
Áp dụng TCDTSBN:
$\frac{x+y-z}{z}=\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z+y+z-x+z+x-y}{z+x+y}=\frac{x+y+z}{x+y+z}=1$
$\Rightarrow x+y=2z; y+z=2x, z+x=2y$. Khi đó:
$P=\frac{(x+y)(y+z)(z+x)}{xyz}=\frac{2z.2x.2y}{xyz}=8$
Ta có: \(x-y-z=0\)
\(\Rightarrow x-y=z\)
\(x-z=y\)
\(y+z=x\)
\(\Rightarrow B=\left(1-\dfrac{z}{x}\right)\left(1-\dfrac{x}{y}\right)\left(1+\dfrac{y}{z}\right)\)
\(=\dfrac{x-z}{x}.\dfrac{-\left(y-x\right)}{y}.\dfrac{z+y}{z}\)
\(=\dfrac{y}{x}.-\dfrac{z}{y}.\dfrac{z}{x}=-1\)
\(\Rightarrow B=-1\)
Lời giải:
Từ đkđb suy ra:
$x-y=\frac{1}{z}-\frac{1}{y}=\frac{y-z}{yz}$
$y-z=\frac{1}{x}-\frac{1}{z}=\frac{z-x}{xz}$
$z-x=\frac{1}{y}-\frac{1}{x}=\frac{x-y}{xy}$
$\Rightarrow (x-y)(y-z)(z-x)=\frac{(y-z)(z-x)(x-y)}{(xyz)^2}$
$\Leftrightarrow (x-y)(y-z)(z-x)(1-\frac{1}{x^2y^2z^2})=0$
$\Rightarrow (x-y)(y-z)(z-x)=0$ hoặc $1-\frac{1}{x^2y^2z^2}=1$
$\Rightarrow (x-y)(y-z)(z-x)=0$ hoặc $x^2y^2z^2=1$
Nếu $(x-y)(y-z)(z-x)=0$
$\Rightarrow x=y$ hoặc $y=z$ hoặc $z=x$
Không mất tquat giả sử $x=y$. Khi đó: $\frac{1}{y}=\frac{1}{z}$
$\Rightarrow y=z$
$\Rightarrow x=y=z$. Tương tự khi xét $y=z$ hoặc $z=x$ thì ta cũng thu được $x=y=z$
Vậy $x=y=z$ hoặc $x^2y^2z^2=1$
Áp dụng t/c dtsbn:
\(\dfrac{x}{y+z+1}=\dfrac{y}{x+z+1}=\dfrac{x}{x+y-2}=\dfrac{x+y+z}{y+z+1+x+z+1+x+y-2}=\dfrac{x+y+z}{2\left(x+y+z\right)}=\dfrac{1}{2}\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{y+z+1}=\dfrac{1}{2}\left(1\right)\\\dfrac{y}{x+z+1}=\dfrac{1}{2}\left(2\right)\\x+y+z=\dfrac{1}{2}\left(3\right)\end{matrix}\right.\)
\(\left(1\right)\Rightarrow2x=y+z+1\)
\(\Rightarrow2x=\dfrac{1}{2}-x+1\left(do.\left(3\right)\right)\)
\(\Rightarrow x=\dfrac{1}{2}\)
\(\left(2\right)\Rightarrow2y=x+z+1\)
\(\Rightarrow2y=\dfrac{1}{2}-y+1\left(do.\left(3\right)\right)\)
\(\Rightarrow y=\dfrac{1}{2}\)
\(\left(3\right)\Rightarrow z=\dfrac{1}{2}-x-y=\dfrac{1}{2}-\dfrac{1}{2}-\dfrac{1}{2}=-\dfrac{1}{2}\)
Vậy \(\left(x;y;z\right)\in\left\{\dfrac{1}{2};\dfrac{1}{2};-\dfrac{1}{2}\right\}\)
Lời giải:
$A=\frac{(x+z)(z-y)(y-z)}{yz^2}=\frac{-(x+z)(y-z)^2}{yz^2}$
Vì $-x+y-z=0$ nên $-(x+z)=-y$
$y-z=x$
$\Rightarrow A=\frac{-yx^2}{yz^2}=\frac{-x^2}{z^2}$
Đến đây là kịch rồi bạn ạ, không tính được giá trị cụ thể của biểu thức A. Bạn xem lại đề.
Có \(x-y-z=0\)
\(\Rightarrow\left\{{}\begin{matrix}x-z=y\\x-y=z\\z+y=x\end{matrix}\right.\Rightarrow y-x=-z\)
Có x,y,z ≠ 0
\(\Rightarrow A=\left(1-\dfrac{z}{x}\right)\left(1-\dfrac{x}{y}\right)\left(1+\dfrac{y}{z}\right)\)
\(\Rightarrow A=\left(\dfrac{x-z}{x}\right)\left(\dfrac{y-x}{y}\right)\left(\dfrac{z+y}{z}\right)\)
\(\Rightarrow A=\left(\dfrac{y}{x}\right)\left(\dfrac{-z}{y}\right)\left(\dfrac{x}{z}\right)\)
\(\Rightarrow A=1\)
Vậy A = 1
A = -1
/ ấn nhầm ~ xin lỗi /
Vậy A = -1