Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: AKHL nội tiếp
=>góc ALK=góc AHK=góc ABH
Xét ΔAKL và ΔACB có
góc A chung
góc ALK=góc ABC
=.ΔAKL đồng dạng với ΔACB
=>AL/AB=KL/BC
=>AL*BC=AB*KL
b: ΔDBE cân tại D
=>góc EBD=(180 độ-góc BDE)/2=(180 độ-góc ACB)/2
=(góc BAC+góc ABC)/2
góc EBC=góc EBD-góc CBD=góc ABC/2
=>BE là phân giác của góc ABC
=>E là tâm đường tròn nội tiếp ΔABC
c: góc ALK=góc NLC=sđ cung NC+sđ cung AM
góc ALK=góc ABC=sđ cung AN+sđ cung NC
=>AM=AN
Gọi giao của MN với BC là Q
KLCB nội tiếp
=>QK*QL=QB*QC
MNCB nội tiếp
=>QM*QN=QB*QC=QK*QL
góc KLH=góc KAH=góc KHB
=>QH là tiếp tuyến của (O)
=>QK*QL=QH^2
=>QM*QN=QH^2
=>QH là tiếp tuyếncủa (MHN)
mà AH vuông góc QH
nên AH đi qua tâm của (MHN)
mà AM=AN
nên AM=AN=AH
a: Xét ΔABC vuông tại A có AH là đường cao
nên \(AH^2=HB\cdot HC\)
=>\(HC\cdot3=6^2=36\)
=>HC=12(cm)
BC=BH+HC
=3+12
=15(cm)
b: Xét tứ giác AHBE có
\(\widehat{AHB}=\widehat{AEB}=\widehat{HBE}=90^0\)
Do đó: AHBE là hình chữ nhật
=>HE=BA
Xét ΔBKC vuông tại B có BA là đường cao
nên \(BA^2=AK\cdot AC\)
=>\(HE^2=AK\cdot AC\)
Xét ΔABK vuông tại A có AE là đường cao
nên \(BE\cdot EK=AE^2\)
\(BH\cdot BC+BE\cdot EK\)
\(=AE^2+AH^2\)
\(=AE^2+EB^2\)
\(=AB^2\)
\(=AK\cdot AC\)
c: Ta có: AHBE là hình chữ nhật
=>\(S_{AHBE}=AH\cdot AE\)
=>\(S_{AHBE}< =AH^2+AE^2=AB^2\)
Dấu '=' xảy ra khi AH=AE
Hình chữ nhật AHBE có AH=AE
nên AHBE là hình vuông
=>BA là phân giác của \(\widehat{HBE}\)
=>\(\widehat{ABC}=45^0\)
Xét ΔABC vuông tại A có \(\widehat{ABC}=45^0\)
nên ΔABC vuông cân tại A
Ta có: ΔABC vuông cân tại A
mà AH là đường cao
nên H là trung điểm của BC
Bạn có thể cho mình hỏi vì sao góc HDC + góc ABC = 90 độ đc không?
\(a,\Leftrightarrow5x-3=4\Leftrightarrow x=\dfrac{12}{5}\\ b,ĐK:x\ge0\\ PT\Leftrightarrow5\sqrt{x}+\sqrt{x}+6\sqrt{x}+6=4\sqrt{x}+30\\ \Leftrightarrow8\sqrt{x}=24\Leftrightarrow\sqrt{x}=3\Leftrightarrow x=9\left(tm\right)\\ c,ĐK:x\ge-2\\ PT\Leftrightarrow2\sqrt{x+2}+9\sqrt{x+2}-15=2\sqrt{x+2}+12\\ \Leftrightarrow9\sqrt{x+2}=27\\ \Leftrightarrow\sqrt{x+2}=3\\ \Leftrightarrow x+2=9\\ \Leftrightarrow x=7\left(tm\right)\\ d,\Leftrightarrow\left|x\right|=13\Leftrightarrow\left[{}\begin{matrix}x=13\\x=-13\end{matrix}\right.\)
a: \(\Leftrightarrow5x-3=4\)
hay \(x=\dfrac{7}{5}\)
c) Ta có: \(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\cdot\sqrt{4-\sqrt{15}}\)
\(=\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\cdot\sqrt{8-2\sqrt{15}}\)
\(=\dfrac{\left(8+2\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)^2}{2}\)
\(=\dfrac{\left(\sqrt{5}+\sqrt{3}\right)^2\cdot\left(\sqrt{5}-\sqrt{3}\right)^2}{2}\)
\(=\dfrac{\left(5-3\right)^2}{2}=\dfrac{2^2}{2}=2\)
a) Ta có: \(\sqrt{2018}-\sqrt{2017}=\dfrac{1}{\sqrt{2018}+\sqrt{2017}}\)
\(\sqrt{2016}-\sqrt{2015}=\dfrac{1}{\sqrt{2016}+\sqrt{2015}}\)
mà \(\dfrac{1}{\sqrt{2018}+\sqrt{2017}}< \dfrac{1}{\sqrt{2016}+\sqrt{2015}}\)
nên \(\sqrt{2018}-\sqrt{2017}< \sqrt{2016}-\sqrt{2015}\)
b) Ta có: \(\left(\sqrt{2018}+\sqrt{2016}\right)^2=4034+24\sqrt{14126}\)
\(\left(2\sqrt{2017}\right)^2=8068=4034+4034\)
mà \(24\sqrt{14126}< 4034\)
nên \(\sqrt{2018}+\sqrt{2016}< 2\sqrt{2017}\)