Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Không ai vẽ hình khi làm bài mặt cầu Oxyz đâu bạn, chỉ cần đại số hóa nó là được.
Gọi I là tâm mặt cầu, do mặt cầu tiếp xúc (Q) tại H nên \(IH\perp\left(Q\right)\)
\(\Rightarrow\) Đường thẳng IH nhận vtpt của (Q) là 1 vtcp
\(\Rightarrow\) IH nhận (1;1;-1) là 1 vtcp
Phương trình IH: \(\left\{{}\begin{matrix}x=1+t\\y=-1+t\\z=-t\end{matrix}\right.\)
I vừa thuộc IH vừa thuộc (P) nên là giao điểm của IH và (P)
\(\Rightarrow\) Tọa độ I thỏa mãn:
\(2\left(1+t\right)+\left(-1+t\right)+\left(-t\right)-3=0\)
\(\Rightarrow t=1\Rightarrow I\left(2;0;-1\right)\)
\(\Rightarrow\overrightarrow{IH}=\left(-1;-1;1\right)\Rightarrow R=IH=\sqrt{3}\)
Phương trình (S):
\(\left(x-2\right)^2+y^2+\left(z+1\right)^2=3\)
\(I=\int\dfrac{2}{2+5sinxcosx}dx=\int\dfrac{2sec^2x}{2sec^2x+5tanx}dx\\ =\int\dfrac{2sec^2x}{2tan^2x+5tanx+2}dx\)
We substitute :
\(u=tanx,du=sec^2xdx\\ I=\int\dfrac{2}{2u^2+5u+2}du\\ =\int\dfrac{2}{2\left(u+\dfrac{5}{4}\right)^2-\dfrac{9}{8}}du\\ =\int\dfrac{1}{\left(u+\dfrac{5}{4}\right)^2-\dfrac{9}{16}}du\\ \)
Then,
\(t=u+\dfrac{5}{4}\\I=\int\dfrac{1}{t^2-\dfrac{9}{16}}dt\\ =\int\dfrac{\dfrac{2}{3}}{t-\dfrac{3}{4}}-\dfrac{\dfrac{2}{3}}{t+\dfrac{3}{4}}dt\)
Finally,
\(I=\dfrac{2}{3}ln\left(\left|\dfrac{t-\dfrac{3}{4}}{t+\dfrac{3}{4}}\right|\right)+C=\dfrac{2}{3}ln\left(\left|\dfrac{tanx+\dfrac{1}{2}}{tanx+2}\right|\right)+C\)
\(f'\left(x\right)=2+2sin2x\)
Ta thấy:
\(-1\le sin2x\le1\)
\(-2\le2sinx\le2\)
\(0\le2+2sin2x\le4\)
\(\Rightarrow f'\left(x\right)\ge0\forall x\)
nên hàm số đồng biến trên R
\(\int\left(\dfrac{7}{cos^2x}+cosx-3^x+2\right)dx=7tanx+sinx-\dfrac{3^x}{ln3}+2x+C\)
Lời giải:
Đặt \(\sqrt[3]{9+\sqrt{80}}=a;\sqrt[3]{9-\sqrt{80}}=b\), hiển nhiên \(a,b>0\)
Ta thấy
\(\bullet ab=\sqrt[3]{(9+\sqrt{80})(9-\sqrt{80})}=\sqrt[3]{81-80}=1\) (1)
\(\bullet a^3+b^3=18\Leftrightarrow (a+b)^3-3ab(a+b)=18\)
\(\Leftrightarrow (a+b)^3-3(a+b)=18\)
\(\Leftrightarrow (a+b-3)[(a+b)^2+3(a+b)+6]=0\)
Vế trong ngoặc vuông hiển nhiên lớn hơn 0 nên \(a+b-3=0\Leftrightarrow a+b=3\) (2)
Từ (1),(2) , áp dụng định lý Viete đảo ta suy ra $a,b$ là nghiệm của pt \(x^2-3x+1=0\), suy ra \(a^2-3a+1=0\Rightarrow 3a-a^2=1\)
Biểu thức: \(P=a^{2017}(3-a)^{2018}=[3a-a^2]^{2017}(3-a)=1^{2017}(3-a)\)
\(=3-a=3-\sqrt[3]{9+\sqrt{80}}\)
Đáp án B
P/s: Có 1 cách khác, vì số mũ quá lớn mà có giá trị đẹp, nên ta thấy thông thường bài toán kiểu này số mũ mang ý nghĩa tượng trưng thôi, nên giá trị của biểu thức nó cũng đúng với trường hợp mũ 1;2. Do đó \(P=(\sqrt[3]{9+\sqrt{80}})(3-\sqrt[3]{9+\sqrt{80}})^2\), giá trị này dễ dàng tính được bằng mtct =)))