K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
21 tháng 9 2021

21.

\(\left\{{}\begin{matrix}SA\perp AB\\AC\perp AB\end{matrix}\right.\) \(\Rightarrow AB\perp\left(SAC\right)\)

E là trung điểm SA, F là trung điểm SB \(\Rightarrow\) EF là đường trung bình tam giác SAB

\(\Rightarrow EF||AB\Rightarrow EF\perp\left(SAC\right)\)

\(\Rightarrow EF=d\left(F;\left(SEK\right)\right)\)

\(SE=\dfrac{1}{2}SA=\dfrac{3a}{2}\) ; \(EF=\dfrac{1}{2}AB=a\)

 \(SC=\sqrt{SA^2+AC^2}=a\sqrt{13}\Rightarrow SK=\dfrac{2}{3}SC=\dfrac{2a\sqrt{13}}{3}\)

\(\Rightarrow S_{SEK}=\dfrac{1}{2}SE.SK.sin\widehat{ASC}=\dfrac{1}{2}.\dfrac{3a}{2}.\dfrac{2a\sqrt{13}}{3}.\dfrac{2a}{a\sqrt{13}}=a^2\)

\(\Rightarrow V_{S.EFK}=\dfrac{1}{3}EF.S_{SEK}=\dfrac{1}{3}.a.a^2=\dfrac{a^3}{3}\)

\(AB\perp\left(SAC\right)\Rightarrow AB\perp\left(SEK\right)\Rightarrow AB=d\left(B;\left(SEK\right)\right)\)

\(\Rightarrow V_{S.EBK}=\dfrac{1}{3}AB.S_{SEK}=\dfrac{1}{3}.2a.a^2=\dfrac{2a^3}{3}\)

NV
21 tháng 9 2021

22.

Gọi D là trung điểm AB

Do tam giác ABC đều \(\Rightarrow CD\perp AB\Rightarrow CD\perp\left(SAB\right)\)

\(\Rightarrow CD=d\left(C;\left(SAB\right)\right)\)

\(CD=\dfrac{AB\sqrt{3}}{2}=a\sqrt{3}\) (trung tuyến tam giác đều)

N là trung điểm SC \(\Rightarrow d\left(N;\left(SAB\right)\right)=\dfrac{1}{2}d\left(C;\left(SAB\right)\right)=\dfrac{a\sqrt{3}}{2}\)

\(S_{SAB}=\dfrac{1}{2}SA.AB=a^2\sqrt{3}\) \(\Rightarrow S_{SAM}=\dfrac{1}{2}S_{SAB}=\dfrac{a^2\sqrt{3}}{2}\)

\(\Rightarrow V_{SAMN}=\dfrac{1}{3}.\dfrac{a\sqrt{3}}{2}.\dfrac{a^2\sqrt{3}}{2}=\dfrac{a^3}{4}\)

Lại có:

\(V_{SABC}=\dfrac{1}{3}SA.S_{ABC}=\dfrac{1}{3}.a\sqrt{3}.\dfrac{\left(2a\right)^2\sqrt{3}}{4}=a^3\)

\(\Rightarrow V_{A.BCMN}=V_{SABC}-V_{SANM}=\dfrac{3a^3}{4}\)

28 tháng 1 2023

\(I=\int\dfrac{2}{2+5sinxcosx}dx=\int\dfrac{2sec^2x}{2sec^2x+5tanx}dx\\ =\int\dfrac{2sec^2x}{2tan^2x+5tanx+2}dx\)

 

We substitute :

\(u=tanx,du=sec^2xdx\\ I=\int\dfrac{2}{2u^2+5u+2}du\\ =\int\dfrac{2}{2\left(u+\dfrac{5}{4}\right)^2-\dfrac{9}{8}}du\\ =\int\dfrac{1}{\left(u+\dfrac{5}{4}\right)^2-\dfrac{9}{16}}du\\ \)

Then, 

\(t=u+\dfrac{5}{4}\\I=\int\dfrac{1}{t^2-\dfrac{9}{16}}dt\\ =\int\dfrac{\dfrac{2}{3}}{t-\dfrac{3}{4}}-\dfrac{\dfrac{2}{3}}{t+\dfrac{3}{4}}dt\)

 

Finally,

\(I=\dfrac{2}{3}ln\left(\left|\dfrac{t-\dfrac{3}{4}}{t+\dfrac{3}{4}}\right|\right)+C=\dfrac{2}{3}ln\left(\left|\dfrac{tanx+\dfrac{1}{2}}{tanx+2}\right|\right)+C\)

 

24 tháng 9 2016

\(f'\left(x\right)=2+2sin2x\)

Ta thấy: 

\(-1\le sin2x\le1\)

\(-2\le2sinx\le2\)

\(0\le2+2sin2x\le4\)

\(\Rightarrow f'\left(x\right)\ge0\forall x\)

nên hàm số đồng biến trên R

24 tháng 9 2016

thank you

25 tháng 12 2019

bá vào chỗ mà người nào đó banh ra

25 tháng 12 2019

Đá banh là đánh ba

HAHA

NV
29 tháng 3 2021

Gọi đường sinh là l, bán kính đáy R, chiều cao SO là h

Do thiết diện qua trục là tam giác vuông nên thiết diện là tam giác vuông cân

\(\Rightarrow SO=R\Rightarrow h=R\)

Áp dụng định lý cos: \(AB=\sqrt{OA^2+OB^2-2OA.OB.cos120^0}=R\sqrt{3}\)

Gọi H là trung điểm AB \(\Rightarrow OH\perp AB\) ; \(AH=\dfrac{AB}{2}=\dfrac{R\sqrt{3}}{2}\)

\(OH=\sqrt{OA^2-AH^2}=\dfrac{R}{2}\)

Kẻ \(OK\perp SH\Rightarrow OK\perp\left(SAB\right)\Rightarrow OK=d\left(O;\left(P\right)\right)\)

\(\dfrac{1}{SO^2}+\dfrac{1}{OH^2}=\dfrac{1}{OK^2}\Rightarrow\dfrac{1}{R^2}+\dfrac{4}{R^2}=\dfrac{5}{3a^2}\Rightarrow R=a\sqrt{3}\)

\(V=\dfrac{1}{3}\pi R^2h=\dfrac{1}{3}\pi R^3=\pi a^3\sqrt{3}\)

NV
28 tháng 3 2021

Đặt \(log_2x=t\Rightarrow t\ge4\)

Phương trình trở thành: \(\sqrt{t^2-2t-3}=m\left(t-3\right)\)

\(\Leftrightarrow\sqrt{\left(t+1\right)\left(t-3\right)}=m\left(t-3\right)\)

\(\Leftrightarrow\sqrt{t+1}=m\sqrt{t-3}\)

\(\Leftrightarrow m=\sqrt{\dfrac{t+1}{t-3}}\)

Hàm \(f\left(t\right)=\sqrt{\dfrac{t+1}{t-3}}\) nghịch biến khi \(t\ge4\)

\(\lim\limits_{t\rightarrow+\infty}\sqrt{\dfrac{t+1}{t-3}}=1\) ; \(f\left(4\right)=\sqrt{5}\)

\(\Rightarrow1< f\left(t\right)\le\sqrt{5}\Rightarrow1< m\le\sqrt{5}\)

Đáp án D