K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2021

cộng cả 2 vế với -1

x=105

30 tháng 4 2021

Ta có :\(\frac{x-5}{100}+\frac{x-4}{101}+\frac{x-3}{102}=\frac{x-100}{5}+\frac{x-101}{4}+\frac{x-102}{3}\)

<=> \(\left(\frac{x-5}{100}-1\right)+\left(\frac{x-4}{101}-1\right)+\left(\frac{x-3}{102}-1\right)=\left(\frac{x-100}{5}-1\right)+\left(\frac{x-101}{4}-1\right)+\left(\frac{x-102}{3}-1\right)\)

<=> \(\frac{x-105}{100}+\frac{x-105}{101}+\frac{x-105}{102}=\frac{x-105}{5}+\frac{x-105}{4}+\frac{x-105}{3}\)

<=> \(\left(x-105\right)\left(\frac{1}{100}+\frac{1}{101}+\frac{1}{102}\right)=\left(x-105\right)\left(\frac{1}{5}+\frac{1}{4}+\frac{1}{3}\right)\)

<=> \(\left(x-105\right)\left(\frac{1}{100}+\frac{1}{101}+\frac{1}{102}-\frac{1}{5}-\frac{1}{4}-\frac{1}{3}\right)=0\)

<=> x - 105 = 0 (Vì \(\frac{1}{100}+\frac{1}{101}+\frac{1}{102}-\frac{1}{5}-\frac{1}{4}-\frac{1}{3}\ne0\))

<=> x = 105

Vậy nghiệm phương trình là x = 105

NV
7 tháng 4 2021

\(x\left(x+1\right)\left(x^2+x-5\right)-6\)

\(=\left(x^2+x\right)\left(x^2+x-5\right)-6\)

\(=\left(x^2+x^2\right)^2-5\left(x^2+x\right)-6\)

\(=\left(x^2+x\right)^2+\left(x^2+x\right)-6\left(x^2+x\right)-6\)

\(=\left(x^2+x\right)\left(x^2+x+1\right)-6\left(x^2+x+1\right)\)

\(=\left(x^2+x-6\right)\left(x^2+x+1\right)\)

\(=\left(x-2\right)\left(x+3\right)\left(x^2+x+1\right)\)

\(A=\left(t+2\right)\left(3t-1\right)-t\left(3t+3\right)-2t+7\)

\(=3t^2-t+6t-2-3t^2-3t-2t+7\)

\(=\left(3t^2-3t^2\right)-\left(t-6t+3t+2t\right)-\left(2-7\right)\)

\(=0-0-\left(-5\right)=5\)

10 tháng 7 2021

A=(t+2)(3t−1)−t(3t+3)−2t+7A=(t+2)(3t−1)−t(3t+3)−2t+7

=3t2−t+6t−2−3t2−3t−2t+7=3t2−t+6t−2−3t2−3t−2t+7

=(3t2−3t2)−(t−6t+3t+2t)−(2−7)=(3t2−3t2)−(t−6t+3t+2t)−(2−7)

=0−0−(−5)=5

3 tháng 6 2021

a) \(2\left(x+3\right)=4x-\left(2+x\right)\)

\(2x+6=3x-2\)

\(-x=-8\)=>x=8

3 tháng 6 2021

b) \(\dfrac{1}{x+2}+\dfrac{5}{2-x}=\dfrac{2x-3}{x^2-4}\) đk x khác 2 và -2

\(\dfrac{\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}-\dfrac{5\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{2x-3}{\left(x-2\right)\left(x+2\right)}\)

=>\(x-2-5x-10=2x-3\)

\(-6x=9=>x=\dfrac{3}{2}tm\)

26 tháng 10 2023

1)

\((x+2)(x+3)(x+4)(x+5)-24\\=[(x+2)(x+5)]\cdot[(x+3)(x+4)]-24\\=(x^2+7x+10)(x^2+7x+12)-24\)

Đặt \(x^2+7x+10=y\), khi đó biểu thức trở thành:

\(y(y+2)-24\\=y^2+2y-24\\=y^2+2y+1-25\\=(y+1)^2-5^2\\=(y+1-5)(y+1+5)\\=(y-4)(y+6)\\=(x^2+7x+10-4)(x^2+7x+10+6)\\=(x^2+7x+6)(x^2+7x+16)\)

2) Bạn xem lại đề!

23 tháng 6 2023

\(1,\left(3x+2\right)\left(5-x^2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x+2=0\\5-x^2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{2}{3}\\-x^2=-5\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{2}{3}\\x=\pm\sqrt{5}\end{matrix}\right.\)

Vậy \(S=\left\{-\dfrac{2}{3};-\sqrt{5};\sqrt{5}\right\}\)

\(2,-2x-\dfrac{2}{3}\left(\dfrac{3}{4}-\dfrac{1}{8}x\right)=\left(-\dfrac{1}{2}\right)^3\)

\(\Leftrightarrow-2x-\dfrac{1}{2}+\dfrac{1}{12}x=-\dfrac{1}{8}\)

\(\Leftrightarrow-2x+\dfrac{1}{12}x=-\dfrac{1}{8}+\dfrac{1}{2}\)

\(\Leftrightarrow-\dfrac{23}{12}=\dfrac{3}{8}\)

\(\Leftrightarrow x=-\dfrac{9}{46}\)

Vậy \(S=\left\{-\dfrac{9}{46}\right\}\)

\(3,\dfrac{1}{12}:\dfrac{4}{21}=3\dfrac{1}{2}:\left(3x-2\right)\)

\(\Leftrightarrow\dfrac{1}{12}.\dfrac{21}{4}=\dfrac{7}{2}.\dfrac{1}{3x-2}\)

\(\Leftrightarrow\dfrac{7}{16}=\dfrac{7}{6x-4}\)

\(\Leftrightarrow6x-4=7:\dfrac{7}{16}\)

\(\Leftrightarrow6x-4=16\)

\(\Leftrightarrow x=\dfrac{10}{3}\)

Vậy \(S=\left\{\dfrac{10}{3}\right\}\)

\(4,\dfrac{x-1}{x+2}=\dfrac{4}{5}\left(dk:x\ne-2\right)\)

\(\Rightarrow5\left(x-1\right)=4\left(x+2\right)\)

\(\Rightarrow5x-5=4x+8\)

\(\Rightarrow x=13\left(tmdk\right)\)

Vậy \(S=\left\{13\right\}\)

23 tháng 6 2023

mk c.ơn bn

Câu 1: D
Câu 2: A

Câu 3: B
Câu 4: A

Câu 5: C

Câu 6:B

Câu 7: A

Câu 8: C