Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cái này mình không sử dụng BĐT AM-GM
\(\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\)
\(< =>\left(\dfrac{1}{a}+\dfrac{1}{b}\right).\left(a+b\right)\ge4\)
\(< =>1+\dfrac{b}{a}+\dfrac{a}{b}+1\ge4\)
\(< =>2+\dfrac{a}{b}+\dfrac{b}{a}\ge4\)(luôn đúng với mọi a,b là số thực dương)
Thật vậy có \(\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{a}{b}.\dfrac{b}{a}}=2\)(BĐT Cosi)
\(=>2+\dfrac{a}{b}+\dfrac{b}{a}\ge2+2=4\left(đpcm\right)\)
dấu"=" xảy ra<=>a=b
\(abc\le\left(\frac{a+b+c}{3}\right)^3\Leftrightarrow\sqrt[3]{abc}\le\frac{a+b+c}{3}\)
BĐT Cô- si
Đặt \(P=x+y+\frac{1}{x}+\frac{1}{y}\)
\(=x+y+\frac{1}{4x}+\frac{3}{4x}+\frac{1}{4y}+\frac{3}{4y}\)
\(=\left(x+\frac{1}{4x}\right)+\left(y+\frac{1}{4y}\right)+\left(\frac{3}{4x}+\frac{3}{4y}\right)\)
Áp dụng bđt AM-GM cho 2 số thực dương x,y ta được:
\(x+\frac{1}{4x}\ge2\sqrt{x.\frac{1}{4x}}=1\left(1\right)\)
\(y+\frac{1}{4y}\ge2\sqrt{y.\frac{1}{4y}}=1\left(2\right)\)
\(\frac{3}{4x}+\frac{3}{4y}\ge2\sqrt{\frac{3}{4x}.\frac{3}{4y}}=\frac{3}{2\sqrt{xy}}\left(3\right)\)
Áp dụng bđt AM-GM ta có:
\(\sqrt{xy}\le\frac{x+y}{2}=\frac{1}{2}\left(4\right)\)
Thay (4) vào (3) ta có \(\frac{3}{4x}+\frac{3}{4y}\ge3\left(5\right)\)
(1)+(2)+(5) ta được: \(P\ge3\)
Dấu"="Xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)
\(\dfrac{\sqrt{a-4}}{a}+\dfrac{\sqrt{b-4}}{b}+\dfrac{\sqrt{c-4}}{c}=\dfrac{3}{4}\) (ĐK: \(a\ge4;b\ge4;c\ge4\))
Áp dụng AM-GM có:
\(2\sqrt{4\left(a-4\right)}\le4+a-4=a\)
\(\Rightarrow\dfrac{\sqrt{a-4}}{a}\le\dfrac{1}{4}\)
Tương tự cũng có: \(\dfrac{\sqrt{b-4}}{b}\le\dfrac{1}{4}\);\(\dfrac{\sqrt{c-4}}{c}\le\dfrac{1}{4}\)
Cộng vế với vế \(\Rightarrow VT\le\dfrac{3}{4}\)
Dấu "=" xảy ra khi \(\left\{{}\begin{matrix}4=a-4\\4=b-4\\4=c-4\end{matrix}\right.\)\(\Rightarrow a=b=c=8\) (tm)
Vậy...