Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABE vuông tai A và ΔHBE vuông tại H có
BE chung
gócABE=gócHBE
=>ΔABE=ΔHBE
b: ΔBAE=ΔBHE
=>BA=BH; EA=EH
=>BE là trung trực của AH
a: \(\widehat{B}+\widehat{C}=90^0\)
c: Góc kề bù với C bằng tổng của góc A cộng góc B
a:
\(AB=\dfrac{AC}{2}\)
\(AD=DC=\dfrac{CA}{2}\)
Do đó: AB=AD=DC
Xét ΔAHB vuông tại H và ΔCED vuông tại E có
AB=CD(cmt)
\(\widehat{HAB}=\widehat{ECD}\left(=90^0-\widehat{HBA}\right)\)
Do đó: ΔAHB=ΔCED
b: DE\(\perp\)BC
AH\(\perp\)BC
Do đó: DE//AH
Xét ΔCAH có
D là trung điểm của AC
DE//AH
Do đó: E là trung điểm của CH
=>EC=EH
Xét ΔDHC có
DE là đường cao
DE là đường trung tuyến
Do đó: ΔDHC cân tại D
c: ΔABD vuông tại A
mà AI là đường trung tuyến
nên \(AI=\dfrac{1}{2}BD\left(1\right)\)
ΔBED vuông tại E
mà EI là đường trung tuyến
nên \(EI=\dfrac{1}{2}BD\left(2\right)\)
Từ (1) và (2) suy ra AI=EI
ΔAHB=ΔCED
=>AH=CE
mà CE=EH
nên AH=EH
XétΔAHI và ΔEHI có
HA=HE
HI chung
AI=EI
Do đó: ΔAHI=ΔEHI
d: Xét ΔIDE có ID=IE
nên ΔIDE cân tại I
IK//BC
BC\(\perp\)DE
Do đó: IK\(\perp\)DE
ΔIDE cân tại I
mà IK là đường cao
nên IK là phân giác của góc DIE
=>\(\widehat{DIK}=\widehat{EIK}\)
Xét ΔIKD và ΔIKE có
IK chung
\(\widehat{KID}=\widehat{KIE}\)
ID=IE
Do đó: ΔIKD=ΔIKE
f: Xét tứ giác ADEB có
\(\widehat{DAB}+\widehat{DEB}=90^0+90^0=180^0\)
=>ADEB là tứ giác nội tiếp
=>\(\widehat{AED}=\widehat{ABD}=45^0\)
a: BC=căn 6^2+8^2=10cm
b: Xét ΔBAI vuông tại A và ΔBHI vuông tại H có
BI chung
góc ABI=góc HBI
=>ΔBAI=ΔBHI
=>IA=IH
mà IH<IC
nên IA<IC
c: Xét ΔIAK vuông tại A và ΔIHC vuông tại H có
IA=IH
góc AIK=góc HIC
=>ΔIAK=ΔIHC
=>AK=HC
d: Xét ΔBKC có BA/AK=BH/HC
nên AH//KC
Bài 1:
a: Xét ΔABI và ΔACI có
AB=AC
AI chung
BI=CI
Do đó: ΔABI=ΔACI
Đường thẳng OA trong hình bên là đồ thị của hàm số y=ax
a) Hãy xã định hệ số a ;
b) Đánh dấu điểm trên đồ thị có hoành độ bằng 1/2 ;
c) Đánh dấu điểm trên đồ thị có tung độ bằng -1