Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 4 :
Áp dụng HTL trong tam giác vuông ABC :
\(AC^2=HC\cdot BC\)
\(\Leftrightarrow4^2=HC\cdot\left(HC+1.8\right)\)
\(\Leftrightarrow HC^2+1.8HC-16=0\)
\(\Leftrightarrow\left[{}\begin{matrix}HC=3.2\left(N\right)\\HC=-5\left(L\right)\end{matrix}\right.\)
a:b=\(\frac{2}{7}\)=>a=\(\frac{2}{7}\)*b
Ta có \(\frac{a+35}{b}\)=\(\frac{11}{14}\)
<=>(a+35)*14=11*b
<=>14a+490=11b
<=>14*\(\frac{2}{7}\)*b+490=11b
<=>4*b+490=11b
=> 490=11b-4b
=> 490=7b
=> b=490:7
=> b=70
=>a=70*\(\frac{2}{7}\)
=>a=20
Vậy a=20;b=70
2.
Xét BPT: \(\left(x+3\right)\left(4-x\right)>0\Leftrightarrow-3< x< 4\) \(\Rightarrow D_1=\left(-3;4\right)\)
Xét BPT: \(x< m-1\) \(\Rightarrow D_2=\left(m-1;+\infty\right)\)
Hệ có nghiệm khi và chỉ khi \(D_1\cap D_2\ne\varnothing\)
\(\Leftrightarrow m-1< 4\)
\(\Leftrightarrow m< 5\)
3.
\(\dfrac{\pi}{24}=\dfrac{180^0}{24}=7^030'\)
4.
\(x^2+y^2-x+y+4=0\) không phải đường tròn
Do \(\left(\dfrac{1}{2}\right)^2+\left(-\dfrac{1}{2}\right)^2-4< 0\)
5.
\(f\left(x\right)=ax^2+bx+c\) có \(\left\{{}\begin{matrix}a\ne0\\\Delta=b^2-4ac< 0\end{matrix}\right.\) thì \(f\left(x\right)\) không đổi dấu trên R
6.
\(sin2020a=sin\left(2.1010a\right)=2sin1010a.cos1010a\)
7.
Công thức B sai
\(cos^2a+sin^2a=1\) , không phải \(cos2a\)
Goi AC giao BD tại I => I là trung điểm của AC
Mà G là trọng tâm tam giác ABC => G ∈ BI
Ta có: \(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\) (quy tắc trọng tâm tam giác)
=> \(\overrightarrow{GA}+\overrightarrow{GC}=-\overrightarrow{GB}=\overrightarrow{BG}\)
=> \(\overrightarrow{GA}+\overrightarrow{GC}+\overrightarrow{GD}=\overrightarrow{BG}+\overrightarrow{GD}=\overrightarrow{BD}\)
=> Chọn đáp án B