Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm số chính phương n có 4 chữ số , biết n\(⋮\)7 và S(n)=S(5)
các bạn giúp mình với mình đang cần gấp
a.
Áp dụng tích chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a1-1}{9}=\frac{a2-2}{8}=...=\frac{a9-9}{1}=\frac{\left(a1+a2+...+a9\right)-\left(1+2+...+9\right)}{9+8+...+1}=\frac{90-45}{45}=\frac{45}{45}=1\)
\(\frac{a1-1}{9}=1\Rightarrow a1=9+1=10\)
\(\frac{a2-2}{8}=1\Rightarrow a2=8+2=10\)
.....
\(\frac{a9-9}{1}=1\Rightarrow a9=1+9=10\)
b.
Cách 1:
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}=\frac{2x+1+3y-2}{5+7}=\frac{2x+3y-1}{12}\)
\(6x=12\Rightarrow x=\frac{12}{6}=2\Rightarrow y=3\)
Cách 2:
\(\frac{2x+1}{5}=\frac{3y-2}{7}=\frac{2x+3y-1}{6x}=\frac{\left(2x+1+3y-2\right)-\left(2x+3y-1\right)}{5+7-6x}=\frac{\left(2x+3y-1\right)-\left(2x+3y-1\right)}{5+7+6x}=0\)
\(2x+1=0\Rightarrow x=-\frac{1}{2}\)
\(3y-2=0\Rightarrow y=\frac{2}{3}\)
xét với mọi n thuộc N thì A:2 vì vậy ta cần tìm n để n:3n
xét để A: 3 thì n không có dạng 3k+2 để A:3(k thuộc N)
A=n^2+11n+30
để A:n thì n thuộc ước 30 mà ước thuộc N của 30 là
1,2,3,5,6,10,15,30
trong đó 2,5 có dạng 3k+2 nên ta loại
vậy n là 1,3,6,10,15,30
câu 2:
Giả sử f(x)=ax2+bx+cf(x)=ax2+bx+c (do đề bài cho là đa thức bậc hai)
Suy ra
f(x)−f(x−1)=ax2+bx+c−a(x−1)2−b(x−1)−c=2ax+a+bf(x)−f(x−1)=ax2+bx+c−a(x−1)2−b(x−1)−c=2ax+a+b
Mà f(x)−f(x−1)=xf(x)−f(x−1)=x
⇒2ax+a+b=x⇒2ax+a+b=x
Do đó a+b=0a+b=0 và a=1/2a=1/2 từ đó ta suy ra a=1/2;b=−1/2a=1/2;b=−1/2
Do đó f(x)=\(\frac{x^2}{2}-\frac{x}{2}+c\)
f(n)=1+2+3+...+nf(n)=1+2+3+...+n
Áp dụng điều ta vừa chứng minh được thì:
f(1)−f(0)=1f(1)−f(0)=1
f(2)−f(1)=2f(2)−f(1)=2
....
f(n)−f(n−1)=nf(n)−f(n−1)=n
Do đó
1+2+...+n=f(1)−f(0)+f(2)−f(1)+...+f(n)−f(n−1)=f(n)−f(0)=\(\frac{n^2}{2}-\frac{n}{2}\)=\(\frac{n\left(n-1\right)}{2}\)
\(\frac{x-1}{5}=\frac{y-2}{3}=\frac{z-2}{2}\)\(\text{và }3x-5y+6z=9\)
MÌNH ĐANG CẦN GẤP GIÚP MÌNH NHA
\(\frac{x-1}{5}=\frac{y-2}{3}=\frac{z-2}{2}\)\(\Leftrightarrow\frac{3\left(x-1\right)}{15}=\frac{5\left(y-2\right)}{15}=\frac{6\left(z-2\right)}{12}\)
\(\Leftrightarrow\frac{3x-3}{15}=\frac{5y-10}{15}=\frac{6z-12}{12}\).Áp dụng tc dãy tỉ số "=" nhau ta có:
\(\frac{3x-3}{15}=\frac{5y-10}{15}=\frac{6z-12}{12}=\frac{\left(3x-3\right)-\left(5y-10\right)+\left(6z-12\right)}{15-15+12}=\frac{9-5}{12}=\frac{1}{3}\)
\(\Rightarrow\hept{\begin{cases}\frac{3x-3}{15}=\frac{1}{3}\Rightarrow x=\frac{8}{3}\\\frac{5y-10}{15}=\frac{1}{3}\Rightarrow y=3\\\frac{6z-12}{12}=\frac{1}{3}\Rightarrow z=\frac{8}{3}\end{cases}}\)
\(\left(2x-5\right)^2=0,81\)
\(\left(2x-5\right)^2=0,9^2\)
\(\Rightarrow2x-5=0,9\)
\(2x=0,9+5\)
\(2x=5,9\)
\(x=5,9:2\)
\(x=2,95\)
------------------------------------------
\(\left(x-\frac{1}{3}\right)^3=0,027\)
\(\left(x-\frac{1}{3}\right)^3=0,3^3\)
\(\Rightarrow x-\frac{1}{3}=0,3\)
\(x=0,3+\frac{1}{3}\)
\(x=\frac{19}{30}\)
\(\left(2x-5\right)^2=0,81\)
\(\Rightarrow2x-5=0,9\)
\(\Rightarrow2x=5,9\)
\(\Rightarrow x=2,95\)
\(\left(x-\frac{1}{3}\right)^3=0,027\)
\(\Rightarrow x-\frac{1}{3}=0,3\)
\(\Rightarrow x=\frac{19}{30}\)
Ta có: S1+S2+S3+…+S100=1+2+3+4+5+6+7+8+9+…+n
Dãy trên có số số hạng là:
1+2+3+…+100=5050(số)
=>Số n có giá trị là 5050
=>S1+S2+S3+…+S100=1+2+3+4+5+6+7+8+9+…+5050
=>S1+S2+S3+…+S100=5050.(5050+1):2
=>S1+S2+S3+…+S100=5050.5051:2
=>S1+S2+S3+…+S100=12753775
Lại có:
S1+S2+S3+…+S99=1+2+3+4+5+6+7+8+9+…+m
Dãy trên có số số hạng là:
1+2+3+…+99=4950(số)
=>Số m có giá trị là 5050
=>S1+S2+S3+…+S99=1+2+3+4+5+6+7+8+9+…+4950
=>S1+S2+S3+…+S99=4950.(4950+1):2
=>S1+S2+S3+…+S99=4950.4951:2
=>S1+S2+S3+…+S99=12253725
=>S1+S2+S3+…+S100-(S1+S2+S3+…+S99)=12753775-12253725
=>S100+[(S1+S2+S3+…+S99)-(S1+S2+S3+…+S99)]=500050
=>s100=500050
| 3x + 1/2 | - 2/3 = 1
| 3x + 1/2 | = 1 + 2 /3
| 3x + 1/2 | = 5/3
| 3x | = 5/3 - 1/2
| 3x | = 7/6
| x | = 7/6 : 3
| x | = 7/18
| x | = 0,3
x = 0,3
đề:...
x=-13/18