K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài I:

1: Thay x=4 vào A, ta được:

\(A=\dfrac{4}{2+1}=\dfrac{4}{3}\)

2: \(B=\dfrac{3}{\sqrt{x}+1}+\dfrac{x+5}{x-1}-\dfrac{1}{\sqrt{x}-1}\)

\(=\dfrac{3}{\sqrt{x}+1}+\dfrac{\left(x+5\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\dfrac{1}{\sqrt{x}-1}\)

\(=\dfrac{3\left(\sqrt{x}-1\right)+x+5-\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{3\sqrt{x}-3+x-\sqrt{x}+4}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}=\dfrac{x+2\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)

3: P=A*B

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\cdot\dfrac{x}{\sqrt{x}+1}=\dfrac{x}{\sqrt{x}-1}\)

P<=4

=>P-4<=0

=>\(\dfrac{x-4\sqrt{x}+4}{\sqrt{x}-1}< =0\)

=>\(\dfrac{\left(\sqrt{x}-2\right)^2}{\sqrt{x}-1}< =0\)

=>\(\sqrt{x}-1< 0\)

=>\(\sqrt{x}< 1\)

=>0<=x<1

Kết hợp ĐKXĐ, ta được: 0<=x<1

AH
Akai Haruma
Giáo viên
7 tháng 8 2021

Lời giải:

Đặt \(\sqrt[3]{5\sqrt{2}+7}=m; \sqrt[3]{5\sqrt{2}-7}=n\)

\(m^3-n^3=14\)

\(mn=1\)

\((a+b+c)^3=(m-n)^3=m^3-3mn(m-n)-n^3=14-3(m-n)\)

\(\Leftrightarrow (a+b+c)^3=14-3(a+b+c)\)

\(\Leftrightarrow (a+b+c)^3+3(a+b+c)-14=0\)

\(\Leftrightarrow (a+b+c)^2[(a+b+c)-2]+2(a+b+c)(a+b+c-2)+7(a+b+c-2)=0\)

\(\Leftrightarrow (a+b+c-2)[(a+b+c)^2+2(a+b+c)+7]=0\)

Dễ thấy biểu thức trong ngoặc vuông $>0$ nên $a+b+c-2=0$

$\Leftrightarrow a+b+c=2$

$ab+bc+ac=\frac{(a+b+c)^2-(a^2+b^2+c^2)}{2}=\frac{2^2-1}{2}=\frac{3}{2}$

 

a: \(VT=\left(\dfrac{\sqrt{7}\left(\sqrt{2}-1\right)}{2\left(\sqrt{2}-1\right)}+\dfrac{\sqrt{5}\left(\sqrt{3}-1\right)}{2\left(\sqrt{3}-1\right)}\right)\cdot\left(\sqrt{7}-\sqrt{5}\right)\)

\(=\left(\dfrac{\sqrt{7}+\sqrt{5}}{2}\right)\cdot\left(\sqrt{7}-\sqrt{5}\right)=\dfrac{7-5}{2}=\dfrac{2}{2}=1\)

=VP

b: \(VT=3-\sqrt{5}+2\left(\sqrt{5}+1\right)-\left|\sqrt{5}-2\right|\)

=3-căn 5+2căn 5+2-căn 5+2

=3+2+2=7

=VP

1 tháng 8 2023

Camun đại ka!!

5:

a: =>2x+3=3+2căn 2

=>2x=2căn 2

=>x=căn 2

b: =>10+căn 3x=10+4căn 6

=>căn 3x=4căn 6=căn 96

=>3x=96

=>x=32

c: =>3x-2=7-4căn 3

=>3x=9-4căn 3

=>x=3-4/3*căn 3

a: =>\(2\cdot\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\)

=>2*căn x-5=4

=>căn x-5=2

=>x-5=4

=>x=9

a: Áp dụng định lí Pytago vào ΔADC vuông tại D, ta được:

\(AC^2=AD^2+DC^2\)

\(\Leftrightarrow AC^2=8^2+15^2=289\)

hay AC=17cm

b: Áp dụng hệ thức lượng trong tam giác vuông vào ΔADC vuông tại D có DM là đường cao ứng với cạnh huyền AC, ta được:

\(DM\cdot AC=AD\cdot DC\)

\(\Leftrightarrow DM=\dfrac{120}{17}\left(cm\right)\)

10 tháng 9 2021

a ) Theo định lý py-ta-go trong ΔADC, ta có :
AC^2 = AD^2 + CD^2
         = 8^2 + 15^2
         = 64 + 225
         = 289
=> AC = 17 (cm)
b ) Ta có : 
Xét tam giác ΔMDA và ΔDCA, có :
góc A chung
góc AMD = góc ADC = 90 độ
=> ΔMDA ∼ ΔDCA (G.G)
=> MD/CD = AD/AC
=> MD = CD.AD/AC
           = 15.8/17
           = 7,1 (cm)

19 tháng 3 2021

không có câu hỏi ạ

19 tháng 3 2021

undefined

18 tháng 2 2021

Q = \(\dfrac{3\sqrt{x}}{x+1}\) (x \(\ge\) 0; x \(\ne\) 4)

Áp dụng BĐT Cô-si cho 2 số không âm x và 1 ta được:

\(\dfrac{x+1}{2}\ge\sqrt{x}\) (1)

\(\Leftrightarrow\) \(\dfrac{3\cdot\dfrac{x+1}{2}}{x+1}\ge\dfrac{3\sqrt{x}}{x+1}\) (x + 1 > 0 với mọi x \(\ge\) 0)

\(\Leftrightarrow\) \(\dfrac{6}{2\left(x+1\right)}\ge\dfrac{3\sqrt{x}}{x+1}\)

\(\Leftrightarrow\) \(\dfrac{3}{x+1}\ge\dfrac{3\sqrt{x}}{x+1}\) (*)

Dấu "=" xảy ra \(\Leftrightarrow\) x = 1 (TM)

Khi đó: \(\dfrac{3\sqrt{x}}{x+1}\le\dfrac{3}{1+1}=\dfrac{3}{2}\)

Vậy QMax = \(\dfrac{3}{2}\) khi và chỉ khi x = 1

Chúc bn học tốt!

19 tháng 2 2021

Mình cảm ơn ạ

8 tháng 10 2021

Làm giúp mình với mọi người ơi