Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1-x-2x^2
= 1-x-2x.2x
= 1 - ( x + 2x.2x)
= 1 - 5x
Để 1-x-2x^2 mang giá trị lớn nhất thì x phài là số âm.
\(A=1-x-2x^2\)
\(=-2\left(x^2+2\times x\times\frac{1}{4}+\left(\frac{1}{4}\right)^2-\left(\frac{1}{4}\right)^2-\frac{1}{2}\right)\)
\(=-2\left[\left(x+\frac{1}{4}\right)^2-\frac{9}{16}\right]\)
\(\left(x+\frac{1}{4}\right)^2\ge0\)
\(\left(x+\frac{1}{4}\right)^2-\frac{9}{16}\ge-\frac{9}{16}\)
\(-2\left[\left(x+\frac{1}{4}\right)^2-\frac{9}{16}\right]\le\frac{9}{8}\)
Vậy Max A = \(\frac{9}{8}\) khi x = \(-\frac{1}{4}\)
b: Ta có: \(5x\left(12x+7\right)-3x\left(20x-5\right)=-100\)
\(\Leftrightarrow60x^2+35x-60x^2+15x=-100\)
\(\Leftrightarrow50x=-100\)
hay x=-2
1: BC=căn 7,5^2+10^2=12,5cm
AH=7,5*10/12,5=6cm
góc ADH=góc AEH=góc DAE=90 độ
=>ADHE là hcn
=>DE=AH=6cm
2: ΔAHB vuông tại H có HD là đường cao
nên AD*AB=AH^2
ΔAHC vuông tại H có HElà đường cao
nên AE*AC=AH^2
=>AD*AB=AE*AC
3: ΔAHB vuông tại H có HD là đường cao
nên DH^2=AD*DB
4: AD=AH^2/AB=6^2/7,5=36/7,5=4,8cm
AE=AH^2/AC=6^2/10=3,6cm
S AED=1/2*3,6*4,8=8,64cm2
g, PT \(\Leftrightarrow\dfrac{x+24}{1996}+1+\dfrac{x+25}{1995}+1+\dfrac{x+26}{1994}+1+\dfrac{x+27}{1993}+1+\dfrac{x+2036}{4}-4=0\)
\(\Leftrightarrow\left(x+2020\right)\left(\dfrac{1}{1996}+\dfrac{1}{1995}+\dfrac{1}{1994}+\dfrac{1}{1993}+\dfrac{1}{4}\right)=0\)
\(\Leftrightarrow x+2020=0\)
\(\Leftrightarrow x=-2020\)
Vậy ...
\(a,f\left(x\right)+g\left(x\right)\\ =10x^5-5x^5-8x^4+2x^4+6x^3-4x^3-4x^2+6x^2+2x-8x+1+10+3x^6+2x^6\\ =5x^6+5x^5-6x^4+2x^3+2x^2-6x+11\\ f\left(x\right)-g\left(x\right)\\ =3x^6-2x^6+10x^5+5x^5-8x^4-2x^4+6x^3+4x^3-4x^2-6x^2+2x+8x+1-10\\ =x^6+15x^5-10x^4+10x^3-10x^2+10x-9\)
\(b,f\left(x\right) +g \left(x\right)=3x^4+2x^4+15x^3-15x^3+7x^2-7x^2+3x-3x-\dfrac{1}{2}+\dfrac{1}{2}=5x^4\\ f\left(x\right)-g\left(x\right)=3x^4-2x^4+15x^3+15x^3+7x^2+7x^2+3x+3x-\dfrac{1}{2}-\dfrac{1}{2}\\ =x^4+30x^3+14x^2+6x-1\)
Em cần giúp câu nào hả em? Em nên chụp 1-2 ý cho 1 lần hỏi nhá, như thế mọi người sẽ dễ dàng giúp em hơn
13
a, \(3x-4=-x+8\)
\(< =>3x+x=8+4\)
\(< =>4x=12\)
\(< =>x=\frac{12}{4}=3\)
b, \(\frac{2x+1}{6}+\frac{x-7}{12}=10\)
\(< =>\frac{2\left(2x+1\right)}{12}+\frac{x-7}{12}=\frac{120}{12}\)
\(< =>4x+2+x-7=120\)
\(< =>5x=120+5=125\)
\(< =>x=\frac{125}{5}=\frac{5^3}{5}=5^2=25\)
a) \(Q=\dfrac{\left(x+2\right)^2}{x}\cdot\left(1-\dfrac{x^2}{x+2}\right)-\dfrac{x^2+10x+4}{x}\left(x\ne0;x\ne-2\right)\)
\(Q=\dfrac{\left(x+2\right)^2}{x}\cdot\dfrac{\left(x+2\right)-x^2}{x+2}-\dfrac{x^2+10x+4}{x}\)
\(Q=\dfrac{\left(x+2\right)^2}{x}\cdot\dfrac{-x^2+x+2}{x+2}-\dfrac{x^2+10x+4}{x}\)
\(Q=\dfrac{\left(x+2\right)\left(-x^2+x+2\right)}{x}-\dfrac{x^2+10x+4}{x}\)
\(Q=\dfrac{-x^3+x^2+2x-2x^2+2x+4-x^2-10x-4}{x}\)
\(Q=\dfrac{-x^3-2x^2-6x}{x}\)
\(Q=\dfrac{x\left(-x^2-2x-6\right)}{x}\)
\(Q=-x^2-2x-6\)
b) Ta có:
\(Q=-x^2-2x-6\)
\(Q=-\left(x^2+2x+6\right)\)
\(Q=-\left[\left(x^2+2x+1\right)+5\right]\)
\(Q=-\left(x+1\right)^2-5\)
Mà: \(-\left(x+1\right)^2\le0\forall x\)
\(\Rightarrow Q=-\left(x+1\right)^2-5\le-5\forall x\)
Dấu "=" xảy ra khi:
\(x+1=0\Rightarrow x=-1\)
Vậy: \(Q_{max}=-5\Leftrightarrow x=-1\)