K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 10 2023

3: \(\left(\dfrac{1}{\sqrt{2}-1}-\dfrac{1}{\sqrt{2}+1}\right):\sqrt{3-2\sqrt{2}}\)

\(=\dfrac{\sqrt{2}+1-\sqrt{2}+1}{2-1}:\left(\sqrt{2}-1\right)\)

\(=\dfrac{2}{\sqrt{2}-1}=2\left(\sqrt{2}+1\right)=2\sqrt{2}+2\)

5: 

\(\dfrac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}+\dfrac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}\)

\(=\dfrac{\left(\sqrt{5}+\sqrt{3}\right)^2+\left(\sqrt{5}-\sqrt{3}\right)^2}{\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)}\)

\(=\dfrac{8+2\sqrt{15}+8-2\sqrt{15}}{2}=\dfrac{16}{2}=8\)

6:

\(\dfrac{\sqrt{5}-1}{\sqrt{5}+1}-\dfrac{\sqrt{5}+1}{\sqrt{5}-1}\)

\(=\dfrac{\left(\sqrt{5}-1\right)^2-\left(\sqrt{5}+1\right)^2}{\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)}\)

\(=\dfrac{6-2\sqrt{5}-6-2\sqrt{5}}{4}=\dfrac{-4\sqrt{5}}{4}=-\sqrt{5}\)

4:

\(\dfrac{6}{\sqrt{2}-\sqrt{3}+3}\)

\(=\dfrac{6\left(\sqrt{2}-\sqrt{3}-3\right)}{\left(\sqrt{2}-\sqrt{3}-3\right)\left(\sqrt{2}-\sqrt{3}+3\right)}\)

\(=\dfrac{6\left(\sqrt{2}-\sqrt{3}-3\right)}{5-2\sqrt{6}-9}=\dfrac{-6\left(\sqrt{2}-\sqrt{3}-3\right)}{4+2\sqrt{6}}\)

\(=\dfrac{-3\left(\sqrt{2}-\sqrt{3}-3\right)}{\sqrt{6}+2}=\dfrac{-3\left(\sqrt{2}-\sqrt{3}-3\right)\left(\sqrt{6}-2\right)}{2}\)

\(=\dfrac{-3\left(2\sqrt{3}-2\sqrt{2}-3\sqrt{2}+2\sqrt{3}-6\sqrt{3}+6\right)}{2}\)

\(=\dfrac{-3\left(-2\sqrt{3}-5\sqrt{2}+6\right)}{2}\)

30 tháng 5 2021

Mọi người giúp mình với mình đang cần gấp mình cảm ơn nhiều ạ

9 tháng 11 2021

Bài 1:

\(a,A=6\sqrt{2}-6\sqrt{2}+2\sqrt{5}=2\sqrt{5}\\ b,B=\dfrac{\sqrt{3}\left(\sqrt{3}-1\right)}{\sqrt{3}-1}+\dfrac{\sqrt{2}\left(\sqrt{2}-1\right)}{\sqrt{2}-1}=\sqrt{3}+\sqrt{2}\\ c,=2\sqrt{3}-6\sqrt{3}+15\sqrt{3}-4\sqrt{3}=7\sqrt{3}\\ d,=1+6\sqrt{3}-\sqrt{3}-1=5\sqrt{3}\\ e,=4\sqrt{2}+\sqrt{2}-6\sqrt{2}+3\sqrt{2}=2\sqrt{2}\)

Bài 2:

\(a,ĐK:x\ge\dfrac{3}{2}\\ PT\Leftrightarrow\sqrt{2x-3}=5\Leftrightarrow2x-3=25\Leftrightarrow x=14\\ b,PT\Leftrightarrow x^2=\sqrt{\dfrac{98}{2}}=\sqrt{49}=7\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{7}\\x=-\sqrt{7}\end{matrix}\right.\\ c,ĐK:x\ge3\\ PT\Leftrightarrow\sqrt{x-3}\left(\sqrt{x+3}+1\right)=0\\ \Leftrightarrow\sqrt{x-3}=0\left(\sqrt{x+3}+1>0\right)\\ \Leftrightarrow x=3\\ d,ĐK:x\ge1\\ PT\Leftrightarrow2\sqrt{x-1}-\sqrt{x-1}+3\sqrt{x-1}=4\\ \Leftrightarrow\sqrt{x-1}=1\Leftrightarrow x=2\left(tm\right)\\ e,PT\Leftrightarrow2x-1=16\Leftrightarrow x=\dfrac{17}{2}\\ f,PT\Leftrightarrow\left|2x-1\right|=\sqrt{3}-1\Leftrightarrow\left[{}\begin{matrix}2x-1=\sqrt{3}-1\\2x-1=1-\sqrt{3}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\sqrt{3}}{2}\\x=\dfrac{2-\sqrt{3}}{2}\end{matrix}\right.\)

 

9 tháng 11 2021

Bài 3:

\(a,Q=\dfrac{1+5}{3-1}=3\\ b,P=\dfrac{x+\sqrt{x}-6+x-2\sqrt{x}-3-x+4\sqrt{x}+9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\\ P=\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}=\dfrac{\sqrt{x}}{\sqrt{x}-3}\\ c,M=\dfrac{\sqrt{x}}{\sqrt{x}-3}\cdot\dfrac{3-\sqrt{x}}{\sqrt{x}+5}=\dfrac{-\sqrt{x}}{\sqrt{x}+5}\)

Vì \(-\sqrt{x}\le0;\sqrt{x}+5>0\) nên \(M< 0\)

Do đó \(\left|M\right|>\dfrac{1}{2}\Leftrightarrow M< -\dfrac{1}{2}\Leftrightarrow-\dfrac{\sqrt{x}}{\sqrt{x}+5}+\dfrac{1}{2}< 0\)

\(\Leftrightarrow\dfrac{2\sqrt{x}-\sqrt{x}-5}{2\left(\sqrt{x}+5\right)}< 0\Leftrightarrow\sqrt{x}-5< 0\left(\sqrt{x}+5>0\right)\\ \Leftrightarrow0\le x< 25\)

Bài 4:

\(a,A=\dfrac{16+2\cdot4+5}{4-3}=29\\ b,B=\dfrac{2\sqrt{x}-9-x+9+2x-3\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}\\ B=\dfrac{x-\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-3\right)}=\dfrac{\sqrt{x}+1}{\sqrt{x}-3}\\ c,P=\dfrac{x+2\sqrt{x}+5}{\sqrt{x}-3}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+1}=\dfrac{x+2\sqrt{x}+5}{\sqrt{x}+1}\\ P=\dfrac{\left(\sqrt{x}+1\right)^2+4}{\sqrt{x}+1}=\sqrt{x}+1+\dfrac{4}{\sqrt{x}+1}\\ P\ge2\sqrt{\left(\sqrt{x}+1\right)\cdot\dfrac{4}{\sqrt{x}+1}}=2\sqrt{4}=4\\ P_{min}=4\Leftrightarrow\left(\sqrt{x}+1\right)^2=4\Leftrightarrow\sqrt{x}+1=2\Leftrightarrow x=1\left(tm\right)\)

Bài 2:

a) Để hàm số đồng biến thì m+1>0

hay m>-1

b) Để hàm số đi qua điểm A(2;4) thì

Thay x=2 và y=4 vào hàm số, ta được:

\(\left(m+1\right)\cdot2=4\)

\(\Leftrightarrow m+1=2\)

hay m=1

c) Để hàm số đi qua điểm B(2;-4) thì

Thay x=2 và y=-4 vào hàm số, ta được:

\(2\left(m+1\right)=-4\)

\(\Leftrightarrow m+1=-2\)

hay m=-3

Bài 1:

b) Ta có: \(5\cdot\sqrt{25a^2}-25a\)

\(=5\cdot5\cdot\left|a\right|-25a\)

\(=-25a-25a=-50a\)

27 tháng 5 2022

\(\left(x+2\right)\left(\dfrac{360}{x}-6\right)=360\)

\(ĐK:x\ne0\)

\(\Leftrightarrow\left(x+2\right)\left(\dfrac{360-6x}{x}\right)=360\)

\(\Leftrightarrow360-6x+\dfrac{720-12x}{x}=360\)

\(\Leftrightarrow360x-6x^2+720-12x=360x\)

\(\Leftrightarrow6x^2+12x-720=0\)

\(\Delta=12^2-4.6.\left(-720\right)\)

    \(=17424>0\)

`->` pt có 2 nghiệm

\(\left\{{}\begin{matrix}x_1=\dfrac{-12-\sqrt{17424}}{12}=-12\\x_2=\dfrac{-12+\sqrt{17424}}{12}=10\end{matrix}\right.\) ( tm )

Vậy \(S=\left\{-12;10\right\}\)

a) undefined

b) \(tanOAB=\dfrac{OB}{OA}=\dfrac{5}{\dfrac{5}{3}}=3\Rightarrow\widehat{OAB}=71^o34'\)

21 tháng 7 2021

Ta coi hình vẽ là tam giác ABC vuông tại A với B là đỉnh ngọn đèn

góc BCA=30o(2 góc so le trong)

Theo tỉ số lượng giác trong tam giác vuông ta có:

CA=AB : tanC30

CA=35:tan30=60,6(m)

Vậy khoảng cách từ chân đèn đến hòn đảo là 60,6m

 

 

a: Ta có: \(A=\sqrt{4-\sqrt{15}}\cdot\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\)

\(=\sqrt{8-2\sqrt{15}}\cdot\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\)

\(=\left(8-2\sqrt{15}\right)\left(4+\sqrt{15}\right)\)

\(=32+8\sqrt{15}-8\sqrt{15}-30\)

\(=2>\sqrt{3}\)

27 tháng 5 2022

`48/[x+4]+48/[x-4]=5`           `ĐK: x \ne +-4`

`<=>[48(x-4)+48(x+4)]/[(x-4)(x+4)]=[5(x+4)(x-4)]/[(x-4)(x+4)]`

   `=>48x-192+48x+192=5x^2-80`

`<=>5x^2-96x-80=0`

`<=>5x^2-100+4x-80=0`

`<=>5x(x-20)+4(x-20)=0`

`<=>(x-20)(5x+4)=0`

`<=>` $\left[\begin{matrix} x=20\\ x=\dfrac{-4}{5}\end{matrix}\right.$   (t/m)

Vậy `S={-4/5;20}`

27 tháng 5 2022

ĐK : \(x\ne\pm4\)

\(\Leftrightarrow\cdot\dfrac{48\left(x+4\right)+48\left(x-4\right)}{\left(x+4\right)\left(x-4\right)}=\dfrac{5\left(x+4\right)\left(x-4\right)}{\left(x+4\right)\left(x-4\right)}\)

\(\Leftrightarrow48x+192+48x-192==5x^2-80\)

\(\Leftrightarrow96x=5x^2-80\)

\(\Leftrightarrow5x^2-96x-80=0\)

\(\Leftrightarrow5x^2+4x-100-80=0\)

\(\Leftrightarrow4\left(x-20\right)+5x\left(x-20\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-20=0\\5x=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=20\\x=-\dfrac{4}{5}\end{matrix}\right.\)

b) Đặt (d3): y=ax+b

Vì (d3)//(d1) nên \(a=-\dfrac{2}{3}\)

Vậy: (d3): \(y=\dfrac{-2}{3}x+b\)

Thay x=6 vào (d2), ta được:

\(y=-2\cdot6+4=-12+4=-8\)

Thay x=6 và y=-8 vào (d3), ta được:

\(\dfrac{-2}{3}\cdot6+b=-8\)

\(\Leftrightarrow b=-4\)

Vậy: (d3): \(y=\dfrac{-2}{3}x-4\)

23 tháng 7 2021

Thanks bạn nhìu nha hay giúp mình