K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 7 2023

\(a,f\left(x\right)+g\left(x\right)\\ =10x^5-5x^5-8x^4+2x^4+6x^3-4x^3-4x^2+6x^2+2x-8x+1+10+3x^6+2x^6\\ =5x^6+5x^5-6x^4+2x^3+2x^2-6x+11\\ f\left(x\right)-g\left(x\right)\\ =3x^6-2x^6+10x^5+5x^5-8x^4-2x^4+6x^3+4x^3-4x^2-6x^2+2x+8x+1-10\\ =x^6+15x^5-10x^4+10x^3-10x^2+10x-9\)

27 tháng 7 2023

\(b,f\left(x\right) +g \left(x\right)=3x^4+2x^4+15x^3-15x^3+7x^2-7x^2+3x-3x-\dfrac{1}{2}+\dfrac{1}{2}=5x^4\\ f\left(x\right)-g\left(x\right)=3x^4-2x^4+15x^3+15x^3+7x^2+7x^2+3x+3x-\dfrac{1}{2}-\dfrac{1}{2}\\ =x^4+30x^3+14x^2+6x-1\)

23 tháng 11 2023

\(P=\left(x+\dfrac{1}{x}\right)^2+\left(y+\dfrac{1}{y}\right)^2+\left(z+\dfrac{1}{z}\right)^2-\left(x+\dfrac{1}{x}\right)\left(y+\dfrac{1}{y}\right)\left(z+\dfrac{1}{z}\right)\) 

Ta có: \(xyz=1\Rightarrow x=\dfrac{1}{yz}\) 

\(P=\left(\dfrac{1}{yz}+yz\right)^2+\left(y+\dfrac{1}{y}\right)^2+\left(z+\dfrac{1}{z}\right)^2-\left(yz+\dfrac{1}{yz}\right)\left(y+\dfrac{1}{y}\right)\left(z+\dfrac{1}{z}\right)\)

\(P=\dfrac{1}{y^2z^2}+2+1y^2z^2+y^2+2+\dfrac{1}{y^2}+z^2+2+\dfrac{1}{z^2}-\left(y^2z+z+\dfrac{1}{z}+\dfrac{1}{y^2z}\right)\left(z+\dfrac{1}{z}\right)\)

\(P=\dfrac{1}{y^2z^2}+y^2z^2+y^2+\dfrac{1}{y^2}+z^2+\dfrac{1}{z^2}+6-y^2z^2-y^2-z^2-1-1-\dfrac{1}{z^2}-\dfrac{1}{y^2}-\dfrac{1}{y^2z^2}\)\(P=\left(\dfrac{1}{y^2z^2}-\dfrac{1}{y^2z^2}\right)+\left(y^2z^2-y^2z^2\right)+\left(y^2-y^2\right)+\left(z^2-z^2\right)+\left(\dfrac{1}{y^2}-\dfrac{1}{y^2}\right)+\left(\dfrac{1}{z^2}-\dfrac{1}{z^2}\right)+4\)

\(P=4\)

Vậy: ... 

23 tháng 7 2021

Đáp án không thôi nhá chứ giải mất tg lắm

23 tháng 7 2021

Vg cậu 

a,\(x^2-7x+6=x^2-x-6x+6\)

                       \(=x\left(x-1\right)-6\left(x-1\right)\)

                        \(=\left(x-6\right)\left(x-1\right)\)

6 tháng 8 2021

a) x2-7x+6=(x2-x)-(6x-6)=x(x-1)-6(x-1)=(x-6)(x-1)

b) x2-6x+3=(x2-6x+9)-6=(x-3)2-\(\sqrt{6^2}\)=(x-3-\(\sqrt{6}\))(x-3+\(\sqrt{6}\))

c) x2-4x+3=(x2-x)-(3x-3)=x(x-1)-3(x-1)=(x-3)(x-1)

d) 3x2-5x+2=(3x2-3x)-(2x-2)=3x(x-1)-2(x-1)=(3x-2)(x-1)

e) 7x2-x-6=(7x2-7x)+(6x-6)=7x(x-1)+6(x-1)=(7x+6)(x-1)

f) 3x2-5x-8=(3x2+3x)-(8x+8)=3x(x+1)-8(x+1)=(3x-8)(x+1)

g) x2-6x+5=(x2-x)-(5x-5)=x(x-1)-5(x-1)=(x-5)(x-1)

h) x2-2x-3=(x2-2x+1)-4=(x-1)2-22=(x-1-2)(x-1+2)=(x-3)(x+1)

i) x2-x-12=(x2+3x)-(4x+12)=x(x+3)-4(x+3)=(x-4)(x+3)

Bài cuối mình không thấy rõ đề nhưng mình đoán là thế này bạn nhé.

undefined

 

30 tháng 7 2021

Cảm ơn cậu nhiều lắm ạ 

Bài 17:

1) \(3^2-x^2=\left(3-x\right)\left(3+x\right)\)

2) \(x^2-36=\left(x-6\right)\left(x+6\right)\)

3) \(y^2-1=\left(y-1\right)\left(y+1\right)\)

4) \(25-y^2=\left(5-y\right)\left(5+y\right)\)

5) \(9x^2-1=\left(3x-1\right)\left(3x+1\right)\)

6) \(\dfrac{1}{25}-4x^2=\left(\dfrac{1}{5}-2x\right)\left(\dfrac{1}{5}+2x\right)\)

7) \(9x^2-y^2=\left(3x-y\right)\left(3x+y\right)\)

8) \(x^2-4y^2=\left(x-2y\right)\left(x+2y\right)\)

Bài 18:

1) \(\left(x-5\right)\left(x+5\right)=x^2-25\)

2) \(\left(4-x\right)\left(4+x\right)=16-x^2\)

3) \(\left(x-\dfrac{2}{3}\right)\left(x+\dfrac{2}{3}\right)=x^2-\dfrac{4}{9}\)

4) \(\left(1+2x\right)\left(1-2x\right)=1-4x^2\)

5) \(-\left(2x+3\right)\left(3-2x\right)=\left(2x+3\right)\left(2x-3\right)=4x^2-9\)

6) \(-\left(5x-3\right)\left(3+5x\right)=\left(3-5x\right)\left(3+5x\right)=9-25x^2\)

7) \(-\left(3x-\dfrac{2}{5}\right)\left(3x+\dfrac{2}{5}\right)=-\left(9x^2-\dfrac{4}{25}\right)=\dfrac{4}{25}-9x^2\)

8) \(-\left(2x-\dfrac{2}{3}\right)\left(2x+\dfrac{2}{3}\right)=-\left(4x^2-\dfrac{4}{9}\right)=\dfrac{4}{9}-4x^2\)

2 tháng 10 2023

Bài 5:

a) \(x^2-xy+x-y\)

\(=\left(x^2-xy\right)+\left(x-y\right)\)

\(=x\left(x-y\right)+\left(x-y\right)\)

\(=\left(x+1\right)\left(x-y\right)\)

b) \(xz+yz+4x+4y\)

\(=\left(xz+yz\right)+\left(4x+4y\right)\)

\(=z\left(x+y\right)+4\left(x+y\right)\)

\(=\left(z+4\right)\left(x+y\right)\)

c) \(x^2-x-y^2+y\)

\(=\left(x^2-y^2\right)-\left(x-y\right)\)

\(=\left(x+y\right)\left(x-y\right)-\left(x-y\right)\)

\(=\left(x-y\right)\left(x+y-1\right)\)

d) \(x^2+2x+2z-z^2\)

\(=\left(x^2-z^2\right)+\left(2x+2z\right)\)

\(=\left(x+z\right)\left(x-z\right)+2\left(x+z\right)\)

\(=\left(x+z\right)\left(x-z+2\right)\)