Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt 2015 = a Ta có :
\(\sqrt{1+a^2+\frac{a^2}{\left(a+1\right)^2}}+\frac{a}{a+1}\)
\(=\sqrt{\frac{\left(a+1\right)^2+a^2\left(a+1\right)^2+a^2}{\left(a+1\right)^2}}+\frac{a}{a+1}\)
\(=\sqrt{\frac{\left(a+1\right)^2+a^2\left(a^2+2a+1+1\right)}{\left(a+1\right)^2}}+\frac{a}{a+1}\)
\(=\sqrt{\frac{\left(a+1\right)^2+a^4+2a^3+2a^2}{\left(a+1\right)^2}}+\frac{a}{a+1}\)
\(=\sqrt{\frac{a^4+2a^2\left(a+1\right)+\left(a+1\right)^2}{\left(a+1\right)^2}}+\frac{a}{a+1}\)
\(=\sqrt{\frac{\left(a^2+a+1\right)^2}{\left(a+1\right)^2}}+\frac{a}{a+1}\)
= \(\frac{a^2+a+1}{a+1}+\frac{a}{a+1}=\frac{a^2+2a+1}{a+1}=\frac{\left(a+1\right)^2}{a+1}=a+1=2015+1=2016\)
\(\sqrt{1+n^2+\frac{n^2}{\left(n+1\right)^2}}=\sqrt{\left(1+n-\frac{n}{n+1}\right)^2}=1+n-\frac{n}{n+1}\text{ }\left(n>0\right)\)
\(P==1+2015-\frac{2015}{2016}+\frac{2015}{2016}=2016\)
\(\frac{1}{\left(k+1\right)\sqrt{k}+k\left(\sqrt{k+1}\right)}=\frac{\left(k+1\right)\sqrt{k}-k\left(\sqrt{k+1}\right)}{\left(k+1\right)^2k-k^2\left(k+1\right)}\)
=\(\frac{\left(k+1\right)\sqrt{k}-k\left(\sqrt{k+1}\right)}{\left(k+1\right)k\left(k+1-k\right)}\)
=\(\frac{1}{\sqrt{k}}-\frac{1}{\sqrt{k+1}}\)
áp dụng vào biểu thức ta có\(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+....+\frac{1}{\sqrt{2015}}-\frac{1}{\sqrt{2016}}\)
=\(1-\frac{1}{\sqrt{2016}}\)
đến đây cậu tự giải nốt nhé
Đề viết sai nha bạn phải là \(-\frac{2015^2}{2016^2}\)
\(=\sqrt{1+2015^2-\frac{2015^2}{2016^2}}+\frac{2015}{2016}\)
\(=\sqrt{\left(1+2015-\frac{2015}{2016}\right)^2}+\frac{2015}{2016}\)
\(=1+2015-\frac{2015}{2016}+\frac{2015}{2016}\)
\(=2016\)
tick cho mình nha