Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
Câu b, mình đã làm ở bài tìm biển số xe máy, KQ 7744.
Câu a thì làm như sau:
Gọi số cần tìm là ab (a,b\(\in\)N, 0<a<10, 0\(\le\)b<10), theo bài ra:
ab.135=m2(m\(\in\)N)<=>(10a+b).32.3.5=m2<=>[9a+(a+b)].32.3.5=m2, vì (3,5)=1 nên 9a+(a+b) phải chia hết cho cả 3 và 5.
- Để 9a+(a+b)=10a+b chia hết cho 5 thì b phải = 5
- Để 9a+(a+b) chia hết cho 3 thì a+b=a+5 phải chia hết cho 3, khi đó a=1,4,7
Thử lại thấy a=1 là được. Vậy số cần tìm là 15
Mấy bạn sai hết rùi ko phải 35 vì 35*135=4725 ko phải số chính phương
ta cần làm thế này:Đặt số chính phương cần tìm là n (9<n<100,...)
theo bài ra ta có n*135=k^2 =))n x 3^3 x 5=k^2 =)) n=3*5*a^2
mà 9<n<100 =)) 0,6<a^2<6,6 vậy a^2={1;4} =))) n={15; 60} vây số cần tìm là 15 và 60
Xét lại ta thấy 15 x 135=2025=45^2 60 x 135=8100=90^2
ai ngang qua cho nhé
Gọi hai số chính phương liên tiếp đó là k2 và (k+1)2
Ta có:
k2+(k+1)2+k2.(k+1)2
=k2+k2+2k+1+k4+2k3+k2
=k4+2k3+3k2+2k+1
=(k2+k+1)2
=[k(k+1)+1]2 là số chính phương lẻ.
\(n+13=a^2,n+33=b^2,\left(b>a\ge0;a,b\inℤ\right)\).
\(b^2-a^2=n+33-\left(n+13\right)=20\)
\(\Leftrightarrow\left(b+a\right)\left(b-a\right)=20\)
Có \(a,b\)là số nguyên nên \(b+a,b-a\)là các ước của \(20\)mà lại có \(\left(b+a\right)+\left(b-a\right)=2b\)là số chẵn nên \(b+a,b-a\)cùng tính chẵn lẻ, do đó ta chỉ có trường hợp:
\(\hept{\begin{cases}b+a=10\\b-a=2\end{cases}}\Leftrightarrow\hept{\begin{cases}a=4\\b=6\end{cases}}\)
suy ra \(n=3\).
ta giả sử;
\(\hept{\begin{cases}a^2=n+13\\b^2=n+33\end{cases}\Rightarrow b^2-a^2=20}\) ha y \(\left(b-a\right)\left(b+a\right)=20\Rightarrow\orbr{\begin{cases}b-a=1\\b-a=2\end{cases}\text{ hoặc }b-a=4}\)
với \(\hept{\begin{cases}b-a=1\\b+a=20\end{cases}}\) hoặc \(\hept{\begin{cases}b-a=4\\b+a=5\end{cases}}\)mâu thuẫn với a,b là số tự nhiên
với \(\hept{\begin{cases}b-a=2\\b+a=10\end{cases}\Leftrightarrow\hept{\begin{cases}b=6\\a=4\end{cases}\Rightarrow n=3}}\)
xét mọi số chính phương đều có thể viết dưới dạng :
\(\left(a\cdot n+b\right)^2\) với mọi số \(a,b\) là các số tự nhiên và b nhở hơn n
mà ta có :
\(\left(a\cdot n+b\right)^2=a^2\cdot n^2+2ab\cdot n+b^2\equiv b^2mod\left(n\right)\)
vậy \(b^2< n\forall b< n\)điều này chỉ đúng khi n=2
vậy n=2
Phân tích 2492820 ra thừa số nguyên tố. 2492820=22 × 32 × 5×11×1259. Vậy ước chính phương là 4 và 9