Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{4m^2-12m+9}{m^2-4m+5}=\dfrac{5\left(m^2-4m+5\right)-m^2+8m-16}{m^2-4m+5}=5-\dfrac{\left(m-4\right)^2}{\left(m-2\right)^2+1}\le5\)
Dấu "=" xảy ra khi \(m=4\)
\(x^2-5mx-4m=0\)
Xét \(\Delta=25m^2+16m>0\)
\(\Leftrightarrow\left[{}\begin{matrix}x< -\frac{16}{25}\\x>0\end{matrix}\right.\)
Theo hệ thức Vi-et ta có \(\left\{{}\begin{matrix}x_1+x_2=5m\\x_1x_2=-4m\end{matrix}\right.\)
Vì x1 và x2 là nghiệm pt nên
\(x_1^2-5mx_1-4m=0\Leftrightarrow x_1^2=5mx_1+4m\)
\(x_2^2-5mx_2-4m=0\Leftrightarrow x_2^2=5mx_2+4m\)
\(A=\frac{m^2}{5mx_1+16m+5mx_2}+\frac{5mx_2+16m+5mx_1}{m^2}\)
\(=\frac{m^2}{5m.5m+16m}+\frac{5m.5m+16m}{m^2}\)
\(=\frac{m}{25m+16}+\frac{25m+16}{m}\)
Tự giải tiếp
Gọi \(A\left(x_0;y_0\right)\) là điểm cố định mà đường thẳng đã cho đi qua
\(\Rightarrow\) Với mọi m ta luôn có:
\(\left(2m^2+m+4\right)x_0-\left(m^2-m-1\right)y_0-5m^2-4m-13=0\)
\(\Leftrightarrow\left(2x_0-y_0-5\right)m^2+\left(x_0+y_0-4\right)m+4x_0+y_0-13=0\)
\(\Rightarrow\left\{{}\begin{matrix}2x_0-y_0-5=0\\x_0+y_0-4=0\\4x_0+y_0-13=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_0=3\\y_0=1\end{matrix}\right.\)
Vậy khi m thay đổi thì đường thẳng luôn đi qua điểm cố định có tọa độ \(\left(3;1\right)\)