Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d) Để \(\dfrac{n+1}{2n+1}\in Z\) thì \(n+1⋮2n+1\)
\(\Leftrightarrow1⋮2n+1\)
\(\Leftrightarrow2n+1\in\left\{1;-1\right\}\)
\(\Leftrightarrow2n\in\left\{0;-2\right\}\)
hay \(n\in\left\{0;-1\right\}\)
Mk trả lời mỗi câu khó nha!!!
d*) \(\dfrac{n+1}{2n+1}\in Z\)
Để \(\dfrac{n+1}{2n+1}\in Z\) thì \(n+1⋮2n+1\)
\(n+1⋮2n+1\)
\(\Rightarrow2.\left(n+1\right)⋮2n+1\)
\(\Rightarrow2n+2⋮2n+1\)
\(\Rightarrow2n+1+1⋮2n+1\)
\(\Rightarrow1⋮2n+1\)
\(\Rightarrow2n+1\inƯ\left(1\right)=\left\{\pm1\right\}\)
Ta có bảng giá trị:
2n+1 | -1 | 1 |
n | -1 | 0 |
Vậy \(n\in\left\{-1;0\right\}\)
TK :
Gọi ƯCLN(2n-1; 3n+2) là d. Ta có:
2n-1 chia hết cho d => 6n-3 chia hết cho d
3n+2 chia hết cho d => 6n+4 chia hết cho d => 6n-3+7
=> 6n-3+7-(6n-3) chia hết cho d
=> 7 chia hết cho d
Giả sử phân số rút gọn được
=> 2n-1 chia hết cho 7
=> 2n-1+7 chia hết cho 7
=> 2n+6 chia hết cho 7
=> 2(n+3) chia hết cho 7
=> n+3 chia hết cho 7
=> n = 7k - 3
Vậy để phân số trên tối giản thì n ≠ 7k - 3
Ta có :3n chia hết cho n - 1
<=> 3n - 3 + 3 chia hết cho n - 1
<=> 3.(n - 1) + 3 chia hết cho n - 1
=> 3 chia hết cho n - 1
=> n - 1 thuộc Ư(3) = {-3;-1;1;3}
Ta có bảng :
n - 1 | -3 | -1 | 1 | 3 |
n | -2 | 0 | 2 | 4 |
Ta có : 8 : n - 2
<=> n - 2 thuộc Ư(8) = {-8;-4;-2;-1;1;2;4;8}
Ta có bảng :
n - 2 | -8 | -4 | -2 | -1 | 1 | 2 | 4 | 8 |
n | -6 | -2 | 0 | 1 | 3 | 4 | 6 | 20 |
gọi UWCLN(2n+3;3n+4) là d
2n +3 chia hết cho d, 3n+4 chia hết cho d
2n.3+3.3 chia hết cho d, 3n.2+4.2 chia hết cho d
6n +9 chia hết cho d, 6n+8 chia hết cho d
6n +9- 6n+ 8 chia hết cho d
6n +9- 6n- 8 chia hết cho d
1 chia hết cho d
d=1
với mọi giá trị của số tự nhiên n thì 2n + 3, 3n + 4 là hai số nguyên tố cùng nhau.
Cho mình hỏi tại sao đoạn đầu bạn lại tách 2n +3 thành 2n.3 +3.3 và 3n +4 thành 3n.2 +4.2 vậy ạ?
\(\left(3n-11\right)⋮\left(11-2n\right)\)
\(\Rightarrow\left(6n-22\right)⋮\left(11-2n\right)\)
Ta có: \(6n-22=6n-33+11=3\left(2n-11\right)+11⋮\left(11-2n\right)\)
\(\Leftrightarrow11⋮\left(11-2n\right)\)mà \(n\inℕ\)
suy ra \(11-2n\inƯ\left(11\right)=\left\{-11,-1,1,11\right\}\)
\(\Leftrightarrow n\in\left\{11,6,5,0\right\}\).
Thử lại đều thỏa mãn.
3n-1\(⋮\)n+1
3(n+1)\(⋮\)n+1
3n-1+3(n+1)\(⋮\)n+1
3n-1+3n-3\(⋮\)n+1
4\(⋮\)n+1
\(\Rightarrow\)n+1={1;2;4}
\(\Rightarrow\)n={0;1;3}
3n + 10 = 3n + 6 + 4
= 3.(n + 2) + 4
Để (3n + 10) ⋮ (n + 2) thì 4 ⋮ (n + 2)
⇒ n + 2 ∈ Ư(4) = {-4; -2; -1; 1; 2; 4}
⇒ n ∈ {-6; -4; -3; -1; 0; 2}
A,
Từ đề bài ta có
\(2n+3;2n+2⋮d\Rightarrow\left(2n+3\right)-\left(2n+2\right)⋮d\)
\(\Rightarrow1⋮d\)
suy ra d=1 suy ra đpcm
B nhân 3 vào số đầu tiên
nhâm 2 vào số thứ 2
rồi trừ đi được đpcm
C,
Nhân 2 vào số đầu tiên rồi trừ đi được đpcm
Tính hay chứng minh vậy pn
chứng minh mắt ko thấy à