K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 10 2017

3x3-12x2+12x=0

3x(x2-4x+4)=0

3x(x-2)2=0

3x=0 hoặc (x-2)2=0

x=0            x-2=0

                  x=2

vậy pt có nghiệm x=o và x=2

23 tháng 7 2017

\(a,x^3-3x^2+3x-1=0\)

\(\Leftrightarrow\left(x-1\right)^3=0\)

\(\Rightarrow x-1=0\Rightarrow x=1\)

\(b,\left(x-2\right)^3+6\left(x+1\right)^2-x+12=0\)

\(\Leftrightarrow x^3-6x^2+12x-8+6x^2+12x+6-x+12=0\)\(\Leftrightarrow x^3+23x+10=0\) (1)

Đặt \(t=\dfrac{x}{\dfrac{2\sqrt{69}}{3}}\Leftrightarrow x=\dfrac{2\sqrt{69}}{3}t\)

Khi đó: (1) \(\Leftrightarrow4t^3+3t=-0,2355375386\)

Đặt a= \(\sqrt[3]{-0,2355375386+\sqrt{-0,2355375386^2+1}}\)

\(\alpha=\dfrac{1}{2}\left(a-\dfrac{1}{a}\right)\) , ta được:

\(4\alpha^3+3\alpha=-0,2355375386\) , vậy \(t=\alpha\) là nghiệm của pt

Vậy t= \(\dfrac{1}{2}\left(\sqrt[3]{-0,2355375386}+\sqrt{-0,2355375386^2+1}\right)\) \(\left(\sqrt[3]{-0,2355375386-\sqrt{-0,2355375386^2+1}}\right)\)\(=-0,07788262891\)

\(\Rightarrow x=\dfrac{2\sqrt{69}}{3}.t=-0,4312944692\)

\(c,x^3+6x^2+12x+8=0\)

\(\Leftrightarrow\left(x+2\right)^3=0\)

\(\Leftrightarrow x+2=0\Rightarrow x=-2\)

\(d,x^3-6x^2+12x-8=0\)

\(\Leftrightarrow\left(x-2\right)^3=0\)

\(\Rightarrow x-2=0\Rightarrow x=2\)

\(e,8x^3-12x^2+6x-1=0\)

\(\Leftrightarrow\left(2x-1\right)^3=0\)

\(\Rightarrow2x-1=0\Rightarrow x=\dfrac{1}{2}\)

\(f,x^3+9x^2+27x+27=0\)

\(\Leftrightarrow\left(x+3\right)^3=0\)

\(\Rightarrow x+3=0\Rightarrow x=-3\)

19 tháng 8 2018

Bài 4 : Tìm x biết:

a, 4x2 - 49 = 0

\(\Leftrightarrow\) (2x)2 - 72 = 0

\(\Leftrightarrow\) (2x - 7)(2x + 7) = 0

\(\Leftrightarrow\left\{{}\begin{matrix}2x-7=0\\2x+7=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{7}{2}\\x=-\dfrac{7}{2}\end{matrix}\right.\)

b, x2 + 36 = 12x

\(\Leftrightarrow\) x2 + 36 - 12x = 0

\(\Leftrightarrow\) x2 - 2.x.6 + 62 = 0

\(\Leftrightarrow\) (x - 6)2 = 0

\(\Leftrightarrow\) x = 6

19 tháng 8 2018

e, (x - 2)2 - 16 = 0

\(\Leftrightarrow\) (x - 2)2 - 42 = 0

\(\Leftrightarrow\) (x - 2 - 4)(x - 2 + 4) = 0

\(\Leftrightarrow\) (x - 6)(x + 2) = 0

\(\Leftrightarrow\left\{{}\begin{matrix}x-6=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=6\\x=-2\end{matrix}\right.\)

f, x2 - 5x -14 = 0

\(\Leftrightarrow\) x2 + 2x - 7x -14 = 0

\(\Leftrightarrow\) x(x + 2) - 7(x + 2) = 0

\(\Leftrightarrow\) (x + 2)(x - 7) = 0

\(\Leftrightarrow\left\{{}\begin{matrix}x+2=0\\x-7=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\x=7\end{matrix}\right.\)

x2 - 6x + 9 

= (x -3)2 (hàng đẳng thức đáng nhớ số 2)

x2 + x + 1/4 

= x2 + 2.x.1/2 + 1/4

= (x +1/2)2 (hàng đẳng thức 1)

12 tháng 9 2018

x2-6x+9=(x+3)2

x2+x+\(\frac{1}{4}\)=\(\left(x+\frac{1}{2}\right)^2\)

Học tốt!

AH
Akai Haruma
Giáo viên
14 tháng 1 2020

e) Sửa đề:

$2x^3-12x^2+17x-2=2x^3-4x^2-8x^2+16x+x-2$

$=2x^2(x-2)-8x(x-2)+(x-2)=(x-2)(2x^2-8x+1)$

f)

$x^3-3x+2=(x^3-x)-(2x-2)=x(x^2-1)-2(x-1)=x(x-1)(x+1)-2(x-1)$

$=(x-1)(x^2+x-2)=(x-1)(x^2-x+2x-2)=(x-1)[x(x-1)+2(x-1)]$

$=(x-1)(x-1)(x+2)=(x-1)^2(x+2)$

g)
$x^3+3x^2=x^2(x+3)$

h)

$x^3+9x^2+26x+24=(x^3+9x^2+27x+27)-x-3$

$=(x+3)^3-(x+3)=(x+3)[(x+3)^2-1]=(x+3)(x+3-1)(x+3+1)$

$=(x+3)(x+2)(x+4)$

AH
Akai Haruma
Giáo viên
14 tháng 1 2020

a)

$4x^2-3x-1=4x^2-4x+x-1=4x(x-1)+(x-1)=(4x+1)(x-1)$

b)

$6x^2-11x^2=-5x^2$

c)

\(x^2-7xy+12y^2=x^2-4xy-3xy+12y^2\)

\(=x(x-4y)-3y(x-4y)=(x-3y)(x-4y)\)

d)

\(x^2-2xy+y^2+3x-3y=(x^2-2xy+y^2)+(3x-3y)\)

\(=(x-y)^2+3(x-y)=(x-y)(x-y+3)\)

9 tháng 11 2017

a) \(3x^3-12x=0\)

\(\Rightarrow x\left(3x^2-12\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\3x^2-12=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=0\\3x^2=12\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x^2=4\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\orbr{\begin{cases}-2\\2\end{cases}}\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=0\\x^2=4\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x=\orbr{\begin{cases}2\\-2\end{cases}}\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)

9 tháng 11 2017

a, 3x^2-12x=0

  3x(x-4)=0

-->3x=0  h   x-4=0

     x=0   h   x=4

9 tháng 11 2019

f, \(x^3+1=0\)

\(\left(x+1\right)\left(x^2-x+1\right)=0\)

Ta có 2 trương hợp:

(1) x + 1 = 0 => x = -1

(2) x2 - x + 1 = 0

=> \(\Delta\) = (-1)2 - 4.1.1 = 1 - 4 = -3 nhỏ hơn 0

=> Phương trình vô nghiệm.

Vậy x \(\in\) {-1}

9 tháng 11 2019

a, \(x^2+\frac{1}{4}=x\)

\(x^2-2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2=0\)

\(\left(x-\frac{1}{2}\right)^2=0\)

\(x-\frac{1}{2}=0\\ X=\frac{1}{2}\)