Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\left(3x-2\right)\left(4x+3\right)=\left(2-3x\right)\left(x-1\right)\)
\(\Leftrightarrow12x^2-8x+9x-6=2x-3x^2-2+3x\)
\(\Leftrightarrow12x^2-8x+9x-6-2x+3x^2+2-3x=0\)
\(\Leftrightarrow15x^2-4x-4=0\)
\(\Leftrightarrow15x^2-10x+6x-4=0\)
Lỗi :vvvv
\(\Leftrightarrow10x\left(\dfrac{3}{2}x-1\right)+4\left(\dfrac{3}{2}x-1\right)=0\)
\(\Leftrightarrow\left(10x+4\right)\left(\dfrac{3}{2}x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{2}{5}\\x=\dfrac{2}{3}\end{matrix}\right.\)
Vậy ...
a) =(x-y)*(x+y)-(5*(x+y))
=(x+y)*(x-y-5)
Mấy bài còn lại cũng tương tự nha bạn = cách đặt nhân tử chung
bai nao khong hieu thi pan nhan tin vào nick minh minh se giai đùm ban
a) (x2 - y2) - 5(x + y)
= (x - y)(x + y) - 5 (x + y)
= (x + y) (x - y -5)
b) 5x3 - 5x2y - 10x2 + 10 xy
= 5[(x3 - x2y) - (2x2 - 2 xy)]
=5[x2(x - y) - 2x(x - y)]
=5x(x-y)(x - 2)
c) 2x2 - 5x = x(2x - 5)
d) x3 - 3x2 +1 - 3x
= (x3 + 1) - (3x2 + 3x)
= (x + 1)(x2 - x + 1) - 3x(x + 1)
= (x + 1) [x2 - x + 1 - 3x]
= (x + 1)[x2 - 4x + 1]
= (x + 1)[x2 - 2.x.2 + 22 - 22 + 1]
= (x + 1)[(x - 2)2 - 3]
= \(\left(x+1\right)\left(x-2+\sqrt{3}\right)\left(x-2-\sqrt{3}\right)\)
e) 3x2 - 6xy + 3y2 - 12z2
= 3[ x2 - 2xy + y2 - 4z2]
= 3[ (x - y)2 - (2z)2]
= 3(x - y + 2z)(x - y - 2z)
f) 3x2 - 7x - 10
= 3x2 - 7x - 7 - 3
= (3x2 -3) - (7x + 7)
= 3(x2 - 1) - 7(x + 1)
= 3 (x + 1)(x - 1) - 7(x + 1)
= (x + 1)[3(x - 1) - 7]
= (x +1)(3x - 8)
g) x4 + 1 - 2x2 = (x2)2 - 2.x2 + 1 = (x2 - 1)2
= (x + 1)2(x - 1)2
h) 3x2 - 3y2 - 12x + 12y
= 3(x2 - y2) - 12(x - y)
= 3(x - y)(x + y) - 12(x -y)
= (x - y) [3(x + y) - 12]
= (x - y). 3. (x+y - 4)
j) x2 - 3x + 2 = x2 - x - 2x +2
= x(x - 1) - 2(x -1)
=(x - 1)(x - 2)
\(\Leftrightarrow2x\left(x+5\right)-3\left(x-2\right)=7x+1\)
\(\Leftrightarrow2x^2+10x-3x+6-7x-1=0\)
\(\Leftrightarrow2x^2+5=0\)(vô lý)
ĐKXĐ:\(\left\{{}\begin{matrix}x\ne2\\x\ne-5\end{matrix}\right.\)
\(\dfrac{2x}{x-2}-\dfrac{3}{x+5}=\dfrac{7x+1}{x^2+3x-10}\\ \Leftrightarrow\dfrac{2x\left(x+5\right)}{\left(x+5\right)\left(x-2\right)}-\dfrac{3\left(x-2\right)}{\left(x+5\right)\left(x-2\right)}=\dfrac{7x+1}{x^2-2x+5x-10}\\ \Leftrightarrow\dfrac{2x^2+10x}{\left(x+5\right)\left(x-2\right)}-\dfrac{3x-6}{\left(x+5\right)\left(x-2\right)}=\dfrac{7x+1}{x\left(x-2\right)+5\left(x-2\right)}\\ \Leftrightarrow\dfrac{2x^2+10x}{\left(x+5\right)\left(x-2\right)}-\dfrac{3x-6}{\left(x+5\right)\left(x-2\right)}-\dfrac{7x+1}{\left(x+5\right)\left(x-2\right)}=0\)
\(\Leftrightarrow\dfrac{2x^2+10x-3x+6-7x-1}{\left(x+5\right)\left(x-2\right)}=0\\ \Leftrightarrow\dfrac{2x^2+5}{\left(x+5\right)\left(x-2\right)}=0\\ \Rightarrow2x^2+5=0\left(vô.lí\right)\)
Vậy pt vô nghiệm
\(a,\)\(x^3-3x^2+1-3x\)
\(=\left(x^3+1\right)-\left(3x^2+3x\right)\)
\(=\left(x+1\right)^3-3x\left(x+1\right)\)
\(=\left(x+1\right)\left[\left(x+1\right)^2+3x\right]\)
\(=\left(x+1\right)\left(x^2+2x+1+3x\right)\)
\(=\left(x+1\right)\left(x^2+5x+1\right)\)
\(b,\)\(3x-7x-10\)
\(=3x^2+3x-10x-10\)
\(=\left(3x^2+3x\right)-\left(10x+10\right)\)
\(=3x\left(x+1\right)-10\left(x+1\right)\)
\(=\left(3x-10\right)\left(x+1\right)\)
\(c,\)\(x^4+1-2x^2\)
\(=x^4-x^2-x^2+1\)
\(=\left(x^4-x^2\right)-\left(x^2-1\right)\)
\(=x^2\left(x^2-1\right)-\left(x^2-1\right)\)
\(=\left(x^2-1\right)\left(x^2-1\right)\)
\(d,\)\(=x^2-3x+2\)
\(=x^2-x-2x+2\)
\(=\left(x^2-x\right)-\left(2x-2\right)\)
\(=x\left(x-1\right)-2\left(x-1\right)\)
\(=\left(x-2\right)\left(x-1\right)\)
Theo bài ra , ta có :
\(\left(3x+1\right)^2-\left(3x-2\right)\left(3x+2\right)=10\)
\(\Leftrightarrow9x^2+6x+1-9x^2+4=10\)
\(\Leftrightarrow6x+5=10\)
\(\Leftrightarrow6x=5\)
\(\Leftrightarrow x=\frac{6}{5}=1,2\)
Vậy tập nghiệm của phương trình là \(S=\left\{\frac{6}{5}\right\}\)
Chúc bạn học tốt =))
\(y^2-\left(y-3\right)\left(y+1\right)=y^2-\left(y^2-2y-3\right)=2y+3=10\\ \)
\(y=\frac{7}{2}\Rightarrow x=\frac{5}{6}\)