Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
8) \(\left(x+4\right)\left(6x-12\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+4=0\\6x-12=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-4\\6x=12\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-4\\x=2\end{cases}}}\)
Vậy \(x\in\left\{-4;2\right\}\)
11) \(\left(\frac{7}{8}-2x\right)\left(3x+\frac{1}{3}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{7}{8}-2x=0\\3x+\frac{1}{3}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}2x=\frac{7}{8}-0\\3x=-\frac{1}{3}\end{cases}}\Leftrightarrow\orbr{\begin{cases}2x=\frac{7}{8}\\x=-\frac{1}{9}\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{7}{16}\\x=-\frac{1}{9}\end{cases}}}\)
Vậy \(x\in\left\{\frac{7}{16};-\frac{1}{9}\right\}\)
12) \(3x-2x^2=0\)
\(\Leftrightarrow x\left(3-2x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{3}{2}\end{cases}}\)
Vậy \(x\in\left\{0;\frac{3}{2}\right\}\)
13) \(5x+10x^2=0\)
\(\Leftrightarrow5x\left(1+2x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-\frac{1}{2}\end{cases}}\)
Vậy \(x\in\left\{0;-\frac{1}{2}\right\}\)
\(a,9\left(2x+1\right)=4\left(x-5\right)^2\)
\(4x^2-40x+100=18x+9\)
\(4x^2-58x+91=0\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{29+3\sqrt{53}}{4}\\x=\frac{29-3\sqrt{53}}{4}\end{cases}}\)
\(b,x^3-4x^2-12x+27=0\)
\(\left(x+3\right)\left(x^2-7x+9\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+3=0\\x^2-7x+9=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-3\\x=\frac{7\pm\sqrt{13}}{2}\end{cases}}}\)
\(c,x^3+3x^2-6x-8=0\)
\(\left(x+4\right)\left(x-2\right)\left(x+1\right)=0\)
\(Th1:x+4=0\Leftrightarrow x=-4\)
\(Th2:x-2=0\Leftrightarrow x=2\)
\(Th3:x+1=0\Leftrightarrow x=-1\)
\(a,9.\left(2x+1\right)=4.\left(x-5\right)^2\)
\(< =>4x^2-40x+100=18x+9\)
\(< =>4x^2+58x+91=0\)
\(< =>\orbr{\begin{cases}x=\frac{29-3\sqrt{53}}{4}\\x=\frac{29+3\sqrt{53}}{4}\end{cases}}\)
\(b,x^3-4x^2-12x+27=0\)
\(< =>\left(x+3\right)\left(x^2-7x+9\right)=0\)
\(< =>\orbr{\begin{cases}x+3=0\\x^2-7x+9=0\end{cases}}\)
\(< =>\orbr{\begin{cases}x=-3\\x=\frac{7\pm\sqrt{13}}{2}\end{cases}}\)
a) 6x(3x +5)-2x(9x-2)=17
6x3x+6x5-2x9x-2x(-2)=17
\(18x^2\)+30x-\(18x^2\)+4x=17
\(18x^2-18x^2\)+ 34x=17
0 +34x=17
x=17:34
x=0.5
b)2x(3x-1)-3x(2x+11)-70=0
2x3x-2x1-3x2x+3x11-70=0
\(6x^2-2x-6x^2+33x-70=0\)
-2x+33x-70=0
31x-70=0
31x=0+70
31x=70
x=\(\frac{70}{31}\)
(trong câu c dấu . của mình là nhân nha)
c)5x(2x-3)-4(8-3x)=2(3+5x)
5x2x-5x3-4.8+4.3x=2.3+2.5x
\(10x^2-15x-32+12x=6+10x\)
\(10x^2-15x+12x-10x=6+32\)
\(10x^2-13x=38\)
tạm thời mình bí chổ này thông cảm nha bạn
1) -3x2+5x=0
-x(3x-5)=0
suy ra hoặc x=0 hoặc 3x-5=0. giải ra ta có nghiệm phương trình là 0 và 3/5
2) x2+3x-2x-6=0
x(x+3)-2(x+3)=0
(x-2)(x+3)=0
suy ra hoặc x-2=0 hoặc x+3=0. giải ra ta có nghiệm là 2 và -3
3) x2+6x-x-6=0
x(x+6)-(x+6)=0
(x-1)(x+6)=0. vậy nghiệm là 1 và -6
4) x2+2x-3x-6=0
x(x+2)-3(x+2)=0
(x-3)(x+2)=0
vậy nghiệm là -2 và 3
5) x(x-6)-4(x-6)=0
(x-4)(x-6)=0. vậy nghiệm là 4 và 6
6)x(x-8)-3(x-8)=0
(x-3)(x-8)=0
suy ra nghiệm là 3 và 8
7) x2-5x-24=0
x2-8x+3x-24=0
x(x-8)+3(x-8)=0
(x+3)(x-8)=0
vậy nghiệm là -3 và 8
câu 1: -3x2 + 5x = 0
suy ra -x(3x-5)=0
sung ra x = 0 hoặc 3x-5=0 suy ra 3x = 5 suy ra x = 5/3
\(\left(3x+4\right)\left(7-2x\right)+6x\left(x+4\right)=0\)
\(\Leftrightarrow21x+\left(-8x\right)+6x^2+24x=0\)
\(\Leftrightarrow\left(-11x\right)+6x^2=0\)
Từ đây làm tiếp
(3x+4)(7-2x)+6x(x+4)=0
21x-6x^2+28-8x+6x^2+24x=0
37x+28=0
37x=-28
x=-28/37
a)\(x^2+x-x^2+2=0\)\(\Rightarrow x+2=0\)\(\Rightarrow x=-2\)
b)\(2\left(3x+2\right)-2\left(x+6\right)=0\)
\(\Rightarrow2\left(3x+2-x-6\right)=0\)
\(\Rightarrow2\left(2x-4\right)=0\)
\(\Rightarrow2x-4=0\Rightarrow x=2\)
c)\(4x^4-6x^3-4x^4+6x^3-2x^2=0\)
\(\Rightarrow-2x^2=0\Rightarrow x=0\)
d)\(\left(3x^2-x-2\right)-3\left(x^2-x-2\right)=4\)
\(\Rightarrow3x^2-x-2-3x^2+3x+6=4\)
\(\Rightarrow2x+4=4\Rightarrow2x=0\Rightarrow x=0\)
2x . (3x - 4) - 6x + 8 = 0
<=> 6x2 - 8x - 6x + 8 = 0
<=> 6x2 - 6x - (8x - 8) = 0
<=> 6x (x - 1) - 8 . (x - 1) = 0
<=> (6x - 8) . (x - 1) = 0
<=> \(\orbr{\begin{cases}6x-8=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{8}{6}=\frac{4}{3}\\x=1\end{cases}}\)