\(\left(\frac{7x+1}{x^2-7x}+\frac{7x-1}{x^2+7x}\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

yx=10x=10y

M=\frac{16x^2-40xy}{8x^2-24xy}=\frac{8x\left(2x-5y\right)}{8x\left(x-3y\right)}=\frac{2x-5y}{x-3y}M=8x224xy16x240xy=8x(x3y)8x(2x5y)=x3y2x5y

=\frac{2.10y-5y}{10y-3y}=\frac{15}{7}=10y3y2.10y5y=715
 

Câu 2

21 tháng 12 2021

Answer:

Câu 1:

\(\left(5x-x-\frac{1}{2}\right)2x\)

\(=\left(4x-\frac{1}{2}\right)2x\)

\(=4x.2x-\frac{1}{2}.2x\)

\(=8x^2-x\)

\(\left(x^3+4x^2+3x+12\right)\left(x+4\right)\)

\(=x\left(x^3+4x^2+3x+12\right)+4\left(x^3+4x^2+3x+12\right)\)

\(=x^4+4x^3+3x^2+12x+4x^3+16x^2+12x+48\)

\(=x^4+\left(4x^3+4x^3\right)+\left(3x^2+16x^2\right)+\left(12x+12x\right)+48\)

\(=x^4+8x^3+19x^2+24x+48\)

Ta thay \(x=99\) vào phân thức \(\frac{x^2+1}{x-1}\)\(\frac{\left(99\right)^2+1}{99-1}=\frac{9802}{98}=\frac{4901}{49}\)

Ta thay \(x=4\) vào phân thức \(\frac{x^2-x}{2\left(x-1\right)}\) : \(\frac{4^2-4}{2.\left(4-1\right)}=\frac{12}{6}=2\)

\(\left(x+y\right)^2-\left(x-y\right)^2\)

\(= (x²+2xy+y²)-(x²-2xy+y²)\)

\(= x²+2xy+y²-x²+2xy-y²\)

\(= 4xy\)

\(4x^2+4x+1=\left(2x+1\right)^2=\left(2.2+1\right)^2=25\)

Câu 2:

\(x^2+x=0\)

\(\Rightarrow x\left(x+1\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)

\(x^2.\left(x-1\right)+4-4x=0\)

\(\Rightarrow x^2.\left(x-1\right)+4\left(1-x\right)=0\)

\(\Rightarrow\left(x-1\right)\left(x^2-4\right)=0\)

\(\Rightarrow\left(x-1\right)\left(x-2\right)\left(x+2\right)=0\)

Trường hợp 1: \(x-1=0\Rightarrow x=1\)

Trường hợp 2: \(x-2=0\Rightarrow x=2\)

Trường hợp 3: \(x+2=0\Rightarrow x=-2\)

Câu 3: Bạn xem lại đề bài nhé.

9 tháng 3 2020

a) B xác định\(\Leftrightarrow\hept{\begin{cases}x+1\ne0\\x-1\ne0\end{cases}}\Rightarrow x\ne\pm1\)

b) \(x^2-x=0\Leftrightarrow x\left(x-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)

Mà x khác 1 nên x = 0

\(B=\frac{x-1}{x+1}-\frac{x+1}{x-1}-\frac{4}{1-x^2}\)

\(=\frac{\left(x-1\right)^2-\left(x+1\right)^2}{\left(x+1\right)\left(x-1\right)}+\frac{4}{x^2-1}\)

\(=\frac{x^2-2x+1-x^2-2x-1}{\left(x+1\right)\left(x-1\right)}+\frac{4}{x^2-1}\)

\(=\frac{-4x}{\left(x+1\right)\left(x-1\right)}+\frac{4}{\left(x+1\right)\left(x-1\right)}\)

\(=\frac{-4x+4}{\left(x+1\right)\left(x-1\right)}=\frac{-4\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}=\frac{-4}{x+1}\)

Thay x = 0 vào B, ta được \(P=\frac{-4}{0+1}=-4\)

Vậy P = -4 khi \(x^2-x=0\)

c) \(B=-3\Leftrightarrow\frac{-4}{x+1}=-3\Leftrightarrow x+1=\frac{4}{3}\)

\(\Leftrightarrow x=\frac{1}{3}\)

Vậy B = -3 khi \(x=\frac{1}{3}\)

d) \(B< 0\Leftrightarrow\frac{-4}{x+1}< 0\Leftrightarrow x+1>0\Leftrightarrow x>-1\)

Vậy x > - 1 thì B < 0

tích cho cậu là ấn vào link hay là thích

16 tháng 7 2019

Bài 1:

a) \(\frac{4}{9}x^2-y^2=\left(\frac{2}{3}x-y\right)\left(\frac{2}{3}x+y\right)\)

b) \(x^2-5=\left(x-\sqrt{5}\right)\left(x+\sqrt{5}\right)\)

c) \(4x^2+6x+9=\left(2x+2\right)^2+5\)ko hiểu ???

d) \(\frac{1}{9}x^2-\frac{4}{3}xy+4=\left(\frac{1}{3}x\right)^2-2.\frac{1}{3}x.2+2^2=\left(\frac{1}{3}x-2\right)^2\)

16 tháng 7 2019

Bài 2:

a) \(\left(\frac{1}{2}x-\frac{1}{3}y\right)\left(\frac{1}{2}x+\frac{1}{3}y\right)=\frac{1}{4}x^2-\frac{1}{9}y^2\)

b) \(\left(2x-\frac{1}{3}y\right)\left(4x^2+\frac{2}{3}xy+\frac{1}{9}x^2\right)=8x^3-\frac{1}{27}y^3\)

c) \(\left(3x-5y\right)\left(9x^2+15xy+\frac{1}{9}x^2\right)=27x^3-125y^3\)

30 tháng 10 2020

a) Đk: x > 0 và x khác +-1

Ta có: A = \(\left(\frac{x+1}{x}-\frac{1}{1-x}-\frac{x^2-2}{x^2-x}\right):\frac{x^2+x}{x^2-2x+1}\)

A = \(\left[\frac{\left(x-1\right)\left(x+1\right)+x-x^2+2}{x\left(x-1\right)}\right]:\frac{x\left(x+1\right)}{\left(x-1\right)^2}\)

A = \(\frac{x^2-1+x-x^2+2}{x\left(x-1\right)}\cdot\frac{\left(x-1\right)^2}{x\left(x+1\right)}\)

A = \(\frac{x+1}{x}\cdot\frac{x-1}{x\left(x+1\right)}=\frac{x-1}{x^2}\)

b) Ta có: A = \(\frac{x-1}{x^2}=\frac{1}{x}-\frac{1}{x^2}=-\left(\frac{1}{x^2}-\frac{1}{x}+\frac{1}{4}\right)+\frac{1}{4}=-\left(\frac{1}{x}-\frac{1}{2}\right)^2+\frac{1}{4}\le\frac{1}{4}\forall x\)
Dấu "=" xảy ra <=> 1/x - 1/2 = 0 <=> x = 2 (tm)

Vậy MaxA = 1/4 <=> x = 2

\(d,\frac{10x+3}{8}=\frac{7-8x}{12}\)

\(\left(10x+3\right):8=\left(7-8x\right):12\)

\(\left(10x+3\right).\frac{1}{8}=\left(7-8x\right).\frac{1}{12}\)

\(\frac{5}{4}x+\frac{3}{8}=\frac{7}{12}-\frac{8}{12}x\)

\(\frac{5}{4}x+\frac{8}{12}x=\frac{7}{12}-\frac{3}{8}\)

\(\frac{23}{12}x=\frac{5}{24}\)

\(x=\frac{5}{46}\)

6 tháng 3 2020

E mới lớp 6 nên giải sai thì thông cảm ạ UwU

\(b,\frac{x}{10}-\left(\frac{x}{30}+\frac{2x}{45}\right)=\frac{4}{5}\)

\(< =>\frac{9x}{90}-\frac{7x}{90}=\frac{4}{5}\)

\(< =>\frac{x}{45}=\frac{32}{45}\)

\(< =>x=32\)

\(d,\frac{10x+3}{8}=\frac{7-8x}{12}\)

\(< =>\left(10x+3\right).12=\left(7-8x\right).8\)

\(< =>120x+36=56-64x\)

\(< =>184x=56-36=20\)

\(< =>x=\frac{20}{184}=\frac{5}{46}\)

21 tháng 7 2020

\(B=\frac{5x}{x+2}-\frac{3x-23}{x-2}+\frac{40}{4-x^2}\)

a) ĐKXĐ : \(x\ne\pm2\)

\(B=\frac{5x}{x+2}-\frac{3x-23}{x-2}+\frac{40}{4-x^2}\)

\(B=\frac{5x}{x+2}-\frac{3x-23}{x-2}-\frac{40}{x^2-4}\)

\(B=\frac{5x}{x+2}-\frac{3x-23}{x-2}-\frac{40}{\left(x+2\right)\left(x-2\right)}\)

\(B=\frac{5x\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}-\frac{\left(3x-23\right)\left(x+2\right)}{\left(x+2\right)\left(x-2\right)}-\frac{40}{\left(x+2\right)\left(x-2\right)}\)

\(B=\frac{5x^2-10x}{\left(x+2\right)\left(x-2\right)}-\frac{\left(3x^2-17x-46\right)}{\left(x+2\right)\left(x-2\right)}-\frac{40}{\left(x+2\right)\left(x-2\right)}\)

\(B=\frac{5x^2-10x-\left(3x^2-17x-46\right)-40}{\left(x+2\right)\left(x-2\right)}\)

\(B=\frac{5x^2-10x-3x^2+17x+46-40}{\left(x+2\right)\left(x-2\right)}\)

\(B=\frac{2x^2+7x+6}{\left(x+2\right)\left(x-2\right)}=\frac{\left(x+2\right)\left(2x+3\right)}{\left(x+2\right)\left(x-2\right)}=\frac{2x+3}{x-2}\)

b) x2 - 1 = 0 <=> x2 = 1 <=> x = ±1

Với x = 1 

\(B=\frac{2\cdot1+3}{1-2}=-5\)

Với x = -1

\(B=\frac{2\cdot\left(-1\right)+3}{\left(-1\right)-2}=-\frac{1}{3}\)