Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1: ĐKXĐ: $3-x\geq 0\Leftrightarrow x\leq 3$
Đáp án C
Câu 2:
\(\frac{2}{3-\sqrt{x}}=\frac{2(3+\sqrt{x})}{(3-\sqrt{x})(3+\sqrt{x})}=\frac{2(3+\sqrt{x})}{9-x}\)
Đáp án B.
Câu 3: B
Vì $\sqrt{A^2}=|A|$ chứ không phải $A$
Câu 4: B
Câu 5: D
`x^2+[-18]/[x^2+x]=3-x` `ĐK: x \ne -1,x \ne 0`
`<=>[x^2(x^2+x)-18]/[x^2+x]=[(3-x)(x^2+x)]/[x^2+x]`
`=>x^4+x^3-18=3x^2+3x-x^3-x^2`
`<=>x^4+2x^3-2x^2-3x-18=0`
`<=>x^4-2x^3+4x^3-8x^2+6x^2-12x+9x-18=0`
`<=>x^3(x-2)+4x^2(x-2)+6x(x-2)+9(x-2)=0`
`<=>(x-2)(x^3+4x^2+6x+9)=0`
`<=>(x-2)(x^3+3x^2+x^2+3x+3x+9)=0`
`<=>(x-2)[x^2(x+3)+x(x+3)+3(x+3)]=0`
`<=>(x-2)(x+3)(x^2+x+3)=0`
`<=>` $\left[\begin{matrix} x=2 (t/m)\\ x=-3 (t/m)\\x^2+x+3=0\text{ (Vô nghiệm)}\end{matrix}\right.$
Vậy `S={-3;2}`
\(x^2+\dfrac{-18}{x^2+x}=3-x\)
\(\Leftrightarrow x^2-\dfrac{18}{x\left(x+1\right)}=3-x\);\(ĐK:x\ne0;-1\)
\(\Leftrightarrow-\dfrac{18}{x\left(x+1\right)}=3-x-x^2\)
\(\Leftrightarrow\dfrac{18}{x\left(x+1\right)}=x^2+x-3\)
\(\Leftrightarrow\dfrac{18}{x\left(x+1\right)}=x\left(x+1\right)-3\)
Đặt \(x\left(x+1\right)=a\)
\(\Leftrightarrow\dfrac{18}{a}=a-3\)
\(\Leftrightarrow a^2-3a-18=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-3\end{matrix}\right.\)
Với `x=6`
`=>`\(x^2+x=6\)
`<=>x^2+x-6=0`
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\) \((tm)\)
Với `x=-3`
`=>`\(x^2+x=-3\)
`<=>x^2+x+3=0` ( vô lý )
Vậy \(S=\left\{2;-3\right\}\)
Bài 3:
1: ĐKXĐ: \(x\ge1\)
2: ĐKXĐ: \(x\in R\)
3: ĐKXĐ: \(x\le1\)
4: ĐKXĐ: \(x>\dfrac{3}{2}\)
Bài 4:
a) áp dụng pi-ta-go ta có:\(AB^2+AC^2=BC^2\Rightarrow BC=\sqrt{15^2+20^2}=25\)
áp dụng HTL ta có: \(AB.AC=BC.AH\Rightarrow\dfrac{15.20}{25}=AH\Rightarrow AH=12\)
b) áp dụng HTL và ΔAHB ta có: \(AI.AB=AH^2\)
áp dụng HTL và ΔAHC ta có: \(AJ.AC=AH^2\)
\(\Rightarrow AI.AB=AJ.AC\)
\(d,ĐK:x\ge1\\ PT\Leftrightarrow\sqrt{x-1}=2+\sqrt{x+1}\\ \Leftrightarrow x-1=2+x+1+4\sqrt{x+1}\\ \Leftrightarrow4\sqrt{x+1}=-4\Leftrightarrow x\in\varnothing\left(4\sqrt{x+1}\ge0\right)\\ g,ĐK:x\ge\dfrac{1}{2}\\ PT\Leftrightarrow x+\sqrt{2x-1}+x-\sqrt{2x-1}+2\sqrt{\left(x+\sqrt{2x-1}\right)\left(x-\sqrt{2x-1}\right)}=2\\ \Leftrightarrow2x+2\sqrt{x^2-2x+1}=2\\ \Leftrightarrow\sqrt{\left(x-1\right)^2}=\dfrac{2-2x}{2}=1-x\\ \Leftrightarrow\left|x-1\right|=1-x\\ \Leftrightarrow\left[{}\begin{matrix}x-1=1-x\left(x\ge1\right)\\x-1=x-1\left(x< 1\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\left(tm\right)\\x\in R\end{matrix}\right.\)
Em tách ra 1-2 bài/1 câu hỏi để mọi người hỗ trợ nhanh nhất nha!
\(=6\sqrt{5}+21\sqrt{5}-12\sqrt{5}+16\sqrt{5}+50\sqrt{5}=81\sqrt{5}\)