Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x-2\right)^{2012}+\left|y^2-9\right|^{2014}=0\)
Vì \(\left(x-2\right)^{2012}\ge0\forall x\); \(\left|y^2-9\right|^{2014}\ge0\forall y\)
\(\Rightarrow\left(x-2\right)^{2012}+\left|y^2-9\right|^{2014}\ge0\forall x,y\)
mà \(\left(x-2\right)^{2012}+\left|y^2-9\right|^{2014}=0\)( giả thiết )
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}x-2=0\\y^2-9=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y^2=9\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=\pm3\end{cases}}\)
Vậy \(x=2\)và \(y=\pm3\)
Ta có: \(\left(x-2\right)^{2012}+\left|y^2-9\right|^{2014}\ge0\left(\forall x,y\right)\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x-2\right)^{2012}=0\\\left|y^2-9\right|^{2014}=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=2\\y=\pm3\end{cases}}\)
Vậy \(\left(x;y\right)\in\left\{\left(2;3\right);\left(2;-3\right)\right\}\)
Vì |2x-3| - |3x+2| = 0
Suy ra |2x-3|=|3x+2|
Ta có 2 trường hợp:
+)Trường hợp 1: Nếu 2x-3=3x+2
2x-3=3x+2
-3-2=3x-2x
-2=x
+)Trường hợp 2: Nếu 2x-3=-(3x+2)
2x-3=-(3x+2)
2x-3=-3x-2
2x+3x=3-2
5x=1
x=1/5
Vậy x thuộc {-1,1/5}
(2x - 3) - ( 3x + 2) = 0
tính trong ngoặc trước ngoài ngoặc sau
2x - 3 ko phải là 2 nhân âm 3.
2x = 2 nhân x
( 2x - 3) - ( 3x + 2) = 0 có nghĩa là 2x -3 = 3x + 2
còn đâu tự giải nhé
X2-\(\frac{7}{9}\)X=0 <=> X(X-\(\frac{7}{9}\))=0
=> x=0 hoặc x-\(\frac{7}{9}\)=0
x-\(\frac{7}{9}\)=0 <=>X=0+\(\frac{7}{9}\)=\(\frac{7}{9}\)
=> X=0 hoặc \(\frac{7}{9}\)
a) Ta có :\(\left(x+2\right)^2\ge0;\left(y-4\right)^4\ge0;Với\forall x,y\in Z\)
\(\Rightarrow\orbr{\begin{cases}\left(x+2\right)^2=0\\\left(y-3\right)^4=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x+2=0\\y-3=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-2\\y=3\end{cases}}\)
Vậy để (x+2)2 + (y-4)4 =0 thì x = -2 và y = 3
b)Ta có :\(\left(x+y-11\right)^2\ge0;\left(x-y-4\right)^2\ge0;Với\forall x,y\in Z\)
\(\Rightarrow\orbr{\begin{cases}\left(x+y-11\right)^2=0\\\left(x-y-4\right)^2=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x+y=11\\x-y=4\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\left(11+4\right):2=7,5\\y=\left(11-4\right):2=3,5\end{cases}}\)
Vậy để (x+y-11)2 + (x-y-4)2=0 thì x = 7,5 và y = 3,5
a) Ta có :(x+2)2≥0;(y−4)4≥0;Với∀x,y∈Z
⇒[
(x+2)2=0 |
(y−3)4=0 |
⇒[
x+2=0 |
y−3=0 |
⇒[
x=−2 |
y=3 |
Vậy để (x+2)2 + (y-4)4 =0 thì x = -2 và y = 3
b)Ta có :(x+y−11)2≥0;(x−y−4)2≥0;Với∀x,y∈Z
⇒[
(x+y−11)2=0 |
(x−y−4)2=0 |
⇒[
x+y=11 |
x−y=4 |
⇒[
x=(11+4):2=7,5 |
y=(11−4):2=3,5 |
Vậy để (x+y-11)2 + (x-y-4)2=0 thì x = 7,5 và y = 3,5
vì (x-2)^2012 lớn hơn hoặc bằng 0 với mọi x (lớn hơn hoặc bằng ghi bằng ký hiệu đã học nha)
và \(|y^2-9|\ge0\forall x\)
nên (x-2)^2012 + \(|y^2-9|=0\)
\(\Rightarrow\orbr{\begin{cases}\left(x-2\right)^{2012}=0\\|y^2-9|=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x-2=0\\y^2-9=0\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\\orbr{\begin{cases}y=3\\y=-3\end{cases}}\end{cases}}}\)suy ra x-2=0 hoặc y^2-9=0
+)x-2=0 \(\Rightarrow\)x=2
+)y^2-9=0\(\Rightarrow\orbr{\begin{cases}y=3\\y=-3\end{cases}}\)
Vậy các cặp số (x;y) thỏa mẵn là: (2;3) và (2;-3)
Xin lỗi mình ko bt nhé!