Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có f(x)=1-5x
=> f(1)=1-5.1=1-5=-4
f(2)=1-5.2=1-10=-9
f(\(\frac{1}{5}\))=1-\(5\cdot\frac{1}{5}=1-1=0\)
\(f\left(\frac{-3}{5}\right)=1-5\cdot\left(\frac{-3}{5}\right)=1+3=4\)
2. \(\Delta ABC\)có AB=AC \(\Rightarrow\Delta ABC\)cân.
AD là phân giác \(\Delta ABC\)mà \(\Delta ABC\)cân.
\(\Rightarrow AD\)l là đường trung trực \(\Delta ABC\)..
\(\Rightarrow AD\)là đường cao \(\Delta ABC\)..
\(\Leftrightarrow AD\perp BC\).
Đặt a/2=b/5=c/7=k
=>a=2k; b=5k; c=7k
\(P=\dfrac{a-b+c}{a+2b-c}=\dfrac{2k-5k+7k}{2k+10k-7k}=\dfrac{4}{5}\)
\(\dfrac{a}{2}=\dfrac{b}{5}=\dfrac{c}{7}=\dfrac{a-b+c}{2-5+7}=\dfrac{a+2b-c}{2+10-7}\\ \Rightarrow A=\dfrac{2-5+7}{2+10-7}=\dfrac{4}{5}\)
đề sai hay sao ấy bn,HI ở đâu mà lại trên tia HI lấy K sao cho HI=IK vậy
a) P(x) có nghiệm x = 0
<=> 4.0+a=0
<=> 0+a=0
<=> a=0
b) P(x) có nghiệm x = -2
<=> 4.(-2)+a=0
<=> -8+a=0
<=> a=8
c) P(x) có nghiệm x = \(\frac{-1}{2}\)
<=> \(\frac{-1}{2}\).4 +a=0
<=> -2+a=0
<=> a=2
Chúc bạn học tốt nhá!
E vẽ hình nha
Áp dụng định lý Py-ta-go vào tam giác ABC vuông tại A ta được:
\(AB^2+AC^2=BC^2\)
Áp dụng định lý Py-ta-go vào tam giác ADE vuông tại A ta được:
\(AD^2+AE^2=DE^2\)
Áp dụng định lý Py-ta-go vào tam giác ABE vuông tại A ta được:
\(AB^2+AE^2=BE^2\)
Áp dụng định lý Py-ta-go vào tam giác \(ADC\)vuông tại A ta được:
\(AD^2+AC^2=DC^2\)
\(\Rightarrow BE^2+CD^2=AB^2+AE^2+AD^2+AC^2\)
\(\Rightarrow BC^2+DE^2=AB^2+AC^2+AD^2+AE^2\)
làm nốt nha = nhau r đó
ΔBAEΔBAE có:
BE=AB(gt)BE=AB(gt)
⇒ΔBAE⇒ΔBAE cân tại BB
⇒BAEˆ=BEAˆ⇒BAE^=BEA^(1)(1)
Ta có: BA⊥ACBA⊥AC ( ΔABCΔABC vuông tại AA )
EK⊥AC(gt)EK⊥AC(gt)
Nên: BABA // EKEK
⇒BAEˆ=AEKˆ(2)⇒BAE^=AEK^(2)
Từ (1) và (2) suy ra: BEAˆ=AEKˆBEA^=AEK^
Xét ΔAHEΔAHE và ΔAKEΔAKE có:
Hˆ=Kˆ(=90o)H^=K^(=90o)
BEAˆ=AEKˆ(cmt)BEA^=AEK^(cmt)
ACAC là cạnh huyền chung
⇒ΔAHE=ΔAKE⇒ΔAHE=ΔAKE ( cạnh huyền - góc nhọn )
⇒AH=AK
\(a,\) Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk;c=dk\)
\(\Rightarrow\dfrac{ab}{cd}=\dfrac{bk\cdot b}{dk\cdot d}=\dfrac{b^2}{d^2}\\ \dfrac{a^2-b^2}{c^2-d^2}=\dfrac{b^2k^2-b^2}{d^2k^2-d^2}=\dfrac{b^2\left(k^2-1\right)}{d^2\left(k^2-1\right)}=\dfrac{b^2}{d^2}\\ \Rightarrow\dfrac{ab}{cd}=\dfrac{a^2-b^2}{c^2-d^2}\)
b, Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk;c=dk\)
\(\Rightarrow\left(\dfrac{a-b}{c-d}\right)^4=\left(\dfrac{bk-b}{dk-d}\right)^4=\left(\dfrac{b\left(k-1\right)}{d\left(k-1\right)}\right)^4=\dfrac{b^4}{d^4}\\ \dfrac{a^4+b^4}{c^4+d^4}=\dfrac{b^4k^4+b^4}{d^4k^4+d^4}=\dfrac{b^4\left(k^4+1\right)}{d^4\left(k^4+1\right)}=\dfrac{b^4}{d^4}\\ \RightarrowĐpcm\)
c, Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk;c=dk\)
\(\dfrac{ab}{cd}=\dfrac{bk\cdot b}{dk\cdot d}=\dfrac{b^2}{d^2}\\ \dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}=\dfrac{\left(bk+b\right)^2}{\left(dk+d\right)^2}=\dfrac{\left[b\left(k+1\right)\right]^2}{\left[d\left(k+1\right)\right]^2}=\dfrac{b^2\left(k+1\right)^2}{d^2\left(k+1\right)^2}=\dfrac{b^2}{d^2}\\ \RightarrowĐpcm\)