Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.\(-\left(x^2-x-6\right)=-\left(x^2-2.\frac{1}{2}x+\frac{1}{4}-\frac{25}{4}\right)=-\left(x-\frac{1}{2}\right)^2+\frac{25}{4}\le\frac{25}{4}\)
Vậy Max của biểu thức = \(\frac{25}{4}\Leftrightarrow x=\frac{1}{2}\)
Chọn mình nha mình sẽ làm típ 1 bài nữa
\(A-B=x^4-x^2+3=\left(x^2-\frac{1}{2}\right)^2+3-\frac{1}{4}\)
GTLN không có (muốn có thêm DK cho x)
GTNN=3-1/4=11/4 khi \(x=+-\frac{\sqrt{2}}{2}\)
a. A=x2-3x+5=x2-1.5x-1.5x+2.25+2.75=x(x-1.5)-1.5(x-1.5)+2.75=(x-1.5)2+2.75
ta có (x-1.5)2 > hoặc = 0 với mọi x . Suy ra (x-1.5)2 +2.75 > hoặc = 2.75 với mọi x.
Dấu "=" xảy ra khi x-1.5=0 suy ra x=1.5
Vậy Amin=2.75 khi x=1.5
đặt y = 1/x suy ra y <=1,
ta có P = 1 -2y+2016y^2
Tự làm tiếp nhé
a) A = 5x2 - 20x + 2020 = 5(x2 - 4x + 4) + 2000 = 5(x - 2)2 + 2000 \(\ge\)2000 \(\forall\)x
Dấu "=" xảy ra <=> x - 2 = 0 <=> x = 2
Vậy MinA = 2000 khi x = 2+
b) B = -3x2 - 6x + 15 = -3(x2 + 2x + 1) + 18 = -3(x + 1)2 + 18 \(\le\)18 \(\forall\)x
Dấu "=" xảy ra <=> x + 1 = 0 <=> x = -1
Vậy MaxB = 18 khi x = -1
c) C = 9x2 + 2x + 7 = (9x2 + 2x + 1/9) + 62/9 = (3x + 1/3)2 + 62/9 \(\ge\)62/9 \(\forall\)x
Dấu "=" xảy ra <=> 3x + 1/3 = 0 <=> x = -1/9
Vậy MinC = 62/9 khi x = -1/9
d) D = 16 - 2x2 - 8x = -2(x2 + 4x + 4) + 24 = -2(x + 2)2 + 24 \(\le\) 24 \(\forall\)x
Dấu "=" xảy ra <=> x + 2 = 0 <=> x = -2
Vậy MaxD = 24 khi x = -2
\(A=x^2+2x+9y^2-6y+2018\)
\(=x^2+2x+1+9y^2-6y+1+2016\)
\(=\left(x+1\right)^2+\left(3y-1\right)^2+2016\ge2016\forall x;y\)
Dấu ''='' xảy ra khi x = -1 ; y = 1/3
Vậy GTNN của A bằng 2016 tại x = -1 ; y = 1/3
\(a,A=4-x^2+2x=4-\left(x^2-2x\right)=4-\left(x^2-2x+1-1\right)\)
\(=4-\left[\left(x-1\right)^2-1\right]=4-\left(x-1\right)^2+1=5-\left(x-1\right)^2\)
Vì \(\left(x-1\right)^2\ge0=>-\left(x-1\right)^2\le0=>5-\left(x-1\right)^2\le5\) (với mọi x)
Dấu "=" xảy ra \(< =>\left(x-1\right)^2=0< =>x=1\)
Vậy MaxA=5 khi x=1
\(b,B=4x-x^2=-x^2+4x=-\left(x^2-4x\right)=-\left(x^2-4x+4-4\right)\)
\(=-\left[\left(x-2\right)^2-4\right]=-\left(x-2\right)^2+4=4-\left(x-2\right)^2\)
Vì \(\left(x-2\right)^2\ge0=>-\left(x-2\right)^2\le0=>4-\left(x-2\right)^2\le4\) (với mọi x)
Dấu "=" xảy ra \(< =>\left(x-2\right)^2=0< =>x=2\)
Vậy MaxB=4 khi x=2
a) \(4-x^2+2x\)
\(=-\left(x^2-2x-4\right)\)
\(=-\left(x^2-2x+1-5\right)\)
\(=-\left(\left(x-1\right)^2-5\right)\)
\(=5-\left(x-1\right)^2\ge5\)
MIn A = 5 khi \(x-1=0=>x=1\)
b) \(4x-x^2\)
\(=-\left(x^2-4x+4-4\right)\)
\(=>-\left(\left(x-2\right)^2-4\right)\)
\(=4-\left(x-2\right)\ge4\)
MIN B = 4 khi \(x-2=0=>x=2\)
Ủng hộ nha tối rồi
a)4x2-4x+3
=[(2x)2-4x+1]+2
=(2x+1)2+2 \(\ge\)2 với mọi x
Vậy GTNN của 4x2-4x+3 là 2 tại
(2x+1)2+2=2
<=>(2x+1)2 =0
<=>2x+1 =0
<=>x =\(\frac{-1}{2}\)
b)-x2+2x-3
=(-x2+2x-1)-2
= -(x2-2x+1)-2
=-(x-1)2-2 \(\le\)-2
Vậy GTLN của -x2+2x-3 là -2 tại :
-(x-1)2-2=-2
<=>-(x-1)2 =0
<=>x-1 =0
<=>x =1