\(\text{Cho : }\text{a,b,c khác 0 và }a^2=bc.\text{ Chứng minh rằng :}\)<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Giúp mình với :

Áp dụng hằng đẳng thức số 3 và thay a2 = bc vào mẫu 

\(\frac{b^2-c^2}{c^2+a^2}=\frac{\left(b-c\right)\left(b+c\right)}{c^2+bc}=\frac{\left(b-c\right)\left(b+c\right)}{c\left(c+b\right)}\)

\(=\frac{b-c}{c}\left(đpcm\right)\)

HT

21 tháng 10 2021

L:

Giúp mình với :

Áp dụng hằng đẳng thức số 3 và thay a2 = bc vào mẫu 

b2−c2c2+a2 =(b−c)(b+c)c2+bc =(b−c)(b+c)c(c+b) 

=b−cc (đpcm)

^HT^

31 tháng 10 2016

Ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}\)

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\left(\frac{a+b}{c+d}\right)^2\left(1\right)\)

\(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}\left(2\right)\)

Từ (1) và (2) \(\Rightarrow\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}\left(đpcm\right)\)

31 tháng 10 2016

đặt a/b = c/d = k (k thuộc N) 

=> a = bk

c = dk

thay a và c vào 2 phân số cần so sánh thì = nhau

7 tháng 4 2019

\(C=\frac{a}{b+c}+\frac{b}{a+c}+\frac{c}{a+b}\)

\(>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}=1\)

\(D< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2016.2017}\)

\(\Rightarrow D< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2016}-\frac{1}{2017}\)

\(\Rightarrow D< 1-\frac{1}{2017}< 1\)

Vậy C > D

28 tháng 8 2021

ơ kìa đăng 2 hôm r ko ai giúp

14 tháng 8 2017

theo tinh chat cua day ti so bang nhau ta co:

a/b=b/c=c/a =a+b+c/b+c+a=1

suy ra: a/b=1

b/c=1

c/a=1

vay a=b=c=

https://olm.vn/hoi-dap/detail/211794512831.html

Tham khảo ở link này (mình gửi cho)

Học tốt!!!!!!!!!!

8 tháng 11 2017

Đề \(\Rightarrow\frac{a+b}{ab}=\frac{b+c}{bc}\)\(\Leftrightarrow\frac{a}{ab}+\frac{b}{ab}=\frac{b}{bc}+\frac{c}{bc}\)\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}=\frac{1}{b}+\frac{1}{c}\)

\(\Leftrightarrow\frac{1}{a}=\frac{1}{c}\Rightarrow a=c\Leftrightarrow ab=bc\)

\(\Rightarrow\frac{a}{b}=\frac{c}{b}\)

Đề sai hả bạn ?

12 tháng 8 2016

Ta có :\(\frac{a+b}{ab}=\frac{b+c}{bc}=\frac{c+a}{ca}\)

          \(\Rightarrow\frac{1}{a}+\frac{1}{b}=\frac{1}{b}+\frac{1}{c}=\frac{1}{c}+\frac{1}{a}\)

          \(\Rightarrow\frac{1}{a}=\frac{1}{c};\frac{1}{b}=\frac{1}{a};\frac{1}{c}=\frac{1}{b}\)

          \(\Rightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}\)

          \(\Rightarrow a=b=c\)

         \(\Rightarrow ab=bc=ca=a^2=b^2=c^2\)

          \(\Rightarrow ab+bc+ca=a^2+b^2+c^2\)

          \(\Rightarrow\frac{ab+bc+ca}{a^2+b^2+c^2}=1\)

         Vậy M=1

2 tháng 12 2016

\(\frac{a^2+c^2}{b^2+a^2}=\frac{bc+c^2}{b^2+bc}=\frac{c\left(b+c\right)}{b\left(b+c\right)}=\frac{c}{b}\)

vay la song cau nhe

2 tháng 12 2016

a^2+c^2=bc+c^2=c(b+c)

b^2+a^2=b^2+bc=b(b+c)

=>\(\frac{a^2+c^2}{b^2+a^2}\)=\(\frac{c\left(b+c\right)}{b\left(b+c\right)}\)=\(\frac{c}{b}\)