Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải thích các bước giải:
3n+5⋮n+2
⇔3n+6−1⋮n+2
⇔3(n+2)−1⋮n+2
⇔−1⋮n+21)
⇔n+2∈Ư(−1)
⇔n+2∈{−1;1}
⇔n∈{−3;−1}
Vì nn là số tự nhiên nên không có giá trị thõa mãn
⇔n∈{−3;−1}⇔n∈{-3;-1}
Vì nn là số tự nhiên nên không có giá trị thõa mãn
Ta có: 3 + 2/4 - 2 = 2/4
Ta thấy 2/4 rút gọn được: 1/2.
Số nguyên n là: ( 4 - 2) - (2 - 1) = 1
Đs: 1
x + 3 + 9 chia hết x + 3
9 chia hết x + 3
x + 3 thuộc Ư ( 9 )
mà Ư (9) = ( 1,3,9 )
hay x + 3 thuộc ( 1,3,9 )
ta có bảng
x + 3 1 3 9
x -2 0 6
ĐG Loại TM TM
Vậy x thuộc ( 0 , 6 )
bài 2 câu b,:Cũng thế nhưng xét trực tiếp 3 số khác:
* Xét: p # 3
Thấy: 8p-1, 8p, 8p+1 là 3 số nguyên liên tiếp, nên phải có 1 số chia hết cho 3. 8p-1 và 8p > 3 không chia hết cho 3 nên 8p + 1 chia hết cho 3 và > 3 => 8p + 1 là hợp số
Biết mỗi bài đó thôi
1, n + 2 thuộc Ư(3)
=>n + 2 thuộc {-1; 1; -3; 3}
=> n thuộc {-3; -1; -5; 1}
Vậy...
2, n - 6 chia hết cho n - 1
=> n - 1 - 5 chia hết cho n - 1
=> 5 chia hết cho n - 1 (Vì n - 1 chia hết cho n - 1)
=> n - 1 thuộc Ư(5)
=> n - 2 thuộc {1; -1; 5; -5}
=> n thuộc {3; 1; 7; -3}
Vậy...
câu 1:
Ư(3)={-3;-1;1;3}
=> x+2 thuộc {-3;-1;1;3}
nếu x+2=-3 thì x=-5
nếu x+2=-1 thì x=-3
nếu x+2=1 thì x=-1
nếu x+2=3 thì x=1
=> x thuộc {-5;-3;-1;1}
câu 2 mk chịu
Số nguyên tố > 3 luôn tồn tại dưới dạng 3k + 1 hoặc 3k + 2
Nếu p = 3k + 1
=> p + 2 = 3k + 1 + 2 = 3k + 3 = 3 ( k + 1 ) <=> chia hết cho 3
Vậy p không tồn tại ở dạng 3k + 1
=> p = 3k + 2
=> p + 1 = 3k + 2 + 1 = 3k + 3 = 3 ( k + 1 ) <=> chia hết cho 3
Mà các số nguyên tố lớn hơn 3 đều là số lẻ
=> p + 1 là số chẵn <=> chia hết cho 2
p + 1 vừa chia hết cho 2 , vừa chia hết cho 3
=> p + 1 chia hết cho 6
a=5 nha bạn k cho mình đi
7 chia hết cho a + 2
\(\Rightarrow a+2\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)
a + 2 = - 7
a = - 9
a + 2 = - 1
a = - 3
a + 2 = 1
a = - 1
a + 2 = 7
a = 5
Vậy a cần tìm là - 9 ; - 3 ; - 1 ; 5