Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT bunniacoxki ta có:
\(\left(b^2+\left(c+a\right)^2\right)\left(1+4\right)\ge\left(b+2\left(a+c\right)\right)^2\)
=> \(\sqrt{\frac{a^2}{b^2+\left(c+a\right)^2}}\le\sqrt{5}.\frac{a}{b+2c+2a}\)
=> \(VT\le\sqrt{5}.\left(\frac{a}{b+2c+2a}+\frac{b}{c+2a+2b}+\frac{c}{a+2b+2c}\right)\)
Cần CM \(\frac{a}{b+2c+2a}+\frac{b}{c+2a+2b}+\frac{c}{a+2b+2c}\le\frac{3}{5}\)
<=>\(\left(\frac{1}{2}-\frac{a}{b+2c+2a}\right)+\left(\frac{1}{2}-\frac{b}{c+2a+2b}\right)+\left(\frac{1}{2}-\frac{c}{a+2b+2c}\right)\ge\frac{9}{10}\)
<=>\(\frac{b+2c}{b+2c+2a}+\frac{c+2a}{c+2a+2b}+\frac{a+2b}{a+2b+2c}\ge\frac{9}{5}\)
Áp dụng bđt buniacoxki dạng phân thức ở vế trái:
=> \(VT\ge\frac{\left(b+2c+c+2a+a+2b\right)^2}{\left(b+2c\right)^2+2a\left(b+2c\right)+\left(c+2a\right)^2+2b\left(c+2a\right)+\left(a+2b\right)^2+2c\left(a+2b\right)}\)
\(=\frac{9\left(a+b+c\right)^2}{5\left(a+b+c\right)^2}=\frac{9}{5}\)(ĐPCM)
Dấu bằng xảy ra khi a=b=c
\(P=1\sqrt{a-1}+1\sqrt{b-2}+1\sqrt{c-3}\le\dfrac{1}{2}\left(1+a-1+1+b-2+1+c-3\right)=3\)
\(P_{max}=3\) khi \(\left(a;b;c\right)=\left(2;3;4\right)\)
\(P^2=a+b+c-6+2\left(\sqrt{\left(a-1\right)\left(b-2\right)}+\sqrt{\left(a-1\right)\left(c-3\right)}+\sqrt{\left(b-2\right)\left(c-3\right)}\right)\)
\(P^2\ge a+b+c-6=3\)
\(P\ge\sqrt{3}\)
\(P_{min}=\sqrt{3}\) khi \(\left(a;b;c\right)=\left(1;2;6\right);\left(1;5;3\right);\left(4;2;3\right)\)
thầy giải thích thêm phần dấu bằng xảy ra của phần tìm giá trị nhỏ nhất được không ạ
a) Từ giả thiết : \(\dfrac{1}{a}+\dfrac{1}{b}\text{=}\dfrac{1}{c}\)
\(\Rightarrow2ab\text{=}2bc+2ca\)
\(\Rightarrow2ab-2bc-2ca\text{=}0\)
Ta xét : \(\left(a+b-c\right)^2\text{=}a^2+b^2+c^2+2ab-2bc-2ca\)
\(\text{=}a^2+b^2+c^2\)
Do đó : \(A\text{=}\sqrt{a^2+b^2+c^2}\text{=}\sqrt{\left(a+b-c\right)^2}\)
\(\Rightarrow A\text{=}a+b-c\)
Vì a;b;c là các số hữu tỉ suy ra : đpcm
b) Đặt : \(a\text{=}\dfrac{1}{x-y};b\text{=}\dfrac{1}{y-x};c\text{=}\dfrac{1}{z-x}\)
Do đó : \(\dfrac{1}{a}+\dfrac{1}{b}\text{=}\dfrac{1}{c}\)
Ta có : \(B\text{=}\sqrt{\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}}\)
Từ đây ta thấy giống phần a nên :
\(B\text{=}a+b-c\)
\(B\text{=}\dfrac{1}{x-y}+\dfrac{1}{y-z}-\dfrac{1}{z-x}\)
Suy ra : đpcm.
Mình bổ sung đề phần b cần phải có điều kiện của x;y;z nha bạn.
\(a,P=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)+1\)
\(=\left(x+1\right)\left(x+4\right)\left(x+2\right)\left(x+3\right)+1\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)+1\)
\(=\left(x^2+5x+5-1\right)\left(x^2+5x+5+1\right)+1\)
\(=\left(x^2+5x+5\right)^2-1+1\)
\(=\left(x^2+5x+5\right)^2\ge0\forall x\)
Vậy \(P\ge0\forall x\)
\(b,P=\left(x^2+5x+5\right)^2\left(cmt\right)\)
Thay \(x=\frac{\sqrt{7}-5}{2}\)vào P ta được
\(P=\left(\left(\frac{\sqrt{7}-5}{2}\right)^2+5.\frac{\sqrt{7}-5}{2}+5\right)^2\)
\(=\left(\frac{7-10\sqrt{7}+25}{4}+\frac{10\sqrt{7}-50}{4}+\frac{20}{4}\right)^2\)
\(=\left(\frac{32-10\sqrt{7}+10\sqrt{7}-50+20}{4}\right)^2\)
\(=\left(\frac{2}{4}\right)^2\)
\(=\frac{1}{4}\)
a,
P=(x+1)(x+2)(x+3)(x+4)+1
P=[(x+1).(x+4)].[(x+2).(x+3)]+1
P=(x^2+5x+4)(x^2+5x+6)+1
P=[(x^2+5x+5)-1].[(x^2+5x+5)+1]+1
P=(x^2+5x+5)^2-1+1
P=\(\left(x^2+5x+5\right)^2\) \(\ge\)0 với mọi x
Câu b thì thay x vào rồi bấm máy ra ra kết quả
Đáp án D
Hướng dẫn cách giải bằng máy tính cầm tay:
Gán các giá trị :
Sử dụng chức năng giải hệ phương trình bậc nhất 2 ẩn
{Aa+Bb=Ca+b=dAa+Bb=Ca+b=dvới d là giá trị các đáp án
Giải hpt ta được:⎧⎨⎩a=13b=16⇒a+b=12
bạn ơi nếu đã trả lời thì trả lời tử tế giúp mình với chứ ạ