Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhìn BĐT 4 số ngán quá
\(1\ge4\sqrt[4]{\frac{1}{a^2b^2c^2d^2}}\Rightarrow abcd\ge16\)
\(\Rightarrow VT=\frac{abcd}{8}+2\ge4\) (1)
Mà \(VP=\frac{a+c}{\sqrt{ac}}+\frac{b+d}{\sqrt{bd}}\le\frac{2\left(a+c\right)}{a+c}+\frac{2\left(b+d\right)}{b+d}=4\) (2)
(1);(2) \(\Rightarrow\) đpcm
Dấu "=" xảy ra khi \(a=b=c=d=2\)
bđt \(\Leftrightarrow\)\(\Sigma_{cyc}\frac{a^2}{2}+\Sigma_{cyc}\frac{a}{bc}\ge\frac{9}{2}\)
mặt khác: \(\Sigma_{cyc}\frac{a}{bc}=\frac{1}{2}\Sigma_{cyc}\left(\frac{b}{ca}+\frac{c}{ab}\right)\ge\Sigma\frac{1}{a}\)\(\Rightarrow\)\(\Sigma_{cyc}\frac{a}{bc}\ge\Sigma_{cyc}\frac{1}{a}\)
do đó cần CM: \(\Sigma_{cyc}\frac{a^2}{2}+\Sigma_{cyc}\frac{1}{a}\ge\frac{9}{2}\) (1)
\(VT_{\left(1\right)}=\Sigma_{cyc}\left(\frac{a^2}{2}+\frac{1}{2a}+\frac{1}{2a}\right)\ge3.\frac{3}{2}=\frac{9}{2}\)
"=" \(\Leftrightarrow\)\(a=b=c=1\)
Bài 1. Ta có: \(a\left(a+2\right)\left(a-1\right)^2\ge0\therefore\frac{1}{4a^2-2a+1}\ge\frac{1}{a^4+a^2+1}\)
Thiết lập tương tự 2 BĐT còn lại và cộng theo vế rồi dùng Vasc (https://olm.vn/hoi-dap/detail/255345443802.html)
Bài 5: Bất đẳng thức này đúng với mọi a, b, c là các số thực. Chứng minh:
Quy đồng và chú ý các mẫu thức đều không âm, ta cần chứng minh:
\(\frac{1}{2}\left(a^2+b^2+c^2-ab-bc-ca\right)\Sigma\left[\left(a^2+b^2\right)+2c^2\right]\left(a-b\right)^2\ge0\)
Đây là điều hiển nhiên.
\(BDT\Leftrightarrow\sum\left[\dfrac{\left(a+b\right)^2}{c^2+ab}-2\right]\ge0\)\(\Leftrightarrow\sum\dfrac{a^2+b^2-2c^2}{c^2+ab}\ge0\)(*)
\(\Leftrightarrow\sum\left(\dfrac{a^2-c^2}{c^2+ab}+\dfrac{b^2-c^2}{c^2+ab}\right)\ge0\)
\(\Leftrightarrow\sum\left(c^2-a^2\right)\left(\dfrac{1}{a^2+bc}-\dfrac{1}{c^2+ab}\right)\ge0\)
\(\Leftrightarrow\sum\left(c-a\right)^2.\dfrac{\left(c+a\right)\left(c+a-b\right)}{\left(a^2+bc\right)\left(c^2+ab\right)}\ge0\)
\(\dfrac{\left(a+b\right)^2}{c^2+ab}+\dfrac{\left(b+c\right)^2}{a^2+bc}+\dfrac{\left(c+a\right)^2}{b^2+ca}\ge\dfrac{\left(a+b+b+c+c+a\right)^2}{a^2+b^2+c^2+ab+bc+ca}\)\(=\dfrac{4\left(a+b+c\right)^2}{a^2+b^2+c^2+ab+bc+ca}\) (theo AM-GM với a ; b>0)
\(=\dfrac{4\left(a^2+b^2+c^2+2ab+2bc+2ca\right)}{a^2+b^2+c^2+ab+bc+ca}=\dfrac{4.3.\left(a^2+b^2+c^2\right)}{2.\left(a^2+b^2+c^2\right)}\)(do \(a^2+b^2+c^2\ge ab+bc+ca\))
\(=4.1,5\) = 6 ( do a;b;c>0)
Sử dụng bất đẳng thức AM-GM ta có:
\(\hept{\begin{cases}a^n+\left(n-1\right)\left(\frac{a+b+c}{3}\right)^n\ge n\sqrt[n]{a^n\left(\frac{a+b+c}{3}\right)^{n\left(n-1\right)}}=n\left(\frac{a+b+c}{3}\right)^{n-1}a\\b^n+\left(n-1\right)\left(\frac{a+b+c}{3}\right)^n\ge n\sqrt[n]{b^n\left(\frac{a+b+c}{3}\right)^{n\left(n-1\right)}}=n\left(\frac{a+b+c}{3}\right)^{n-1}b\\c^n+\left(n-1\right)\left(\frac{a+b+c}{3}\right)^n\ge n\sqrt[n]{c^n\left(\frac{a+b+c}{3}\right)^{n\left(n-1\right)}}=n\left(\frac{a+b+c}{3}\right)^{n-1}c\end{cases}}\)
_________________________________________________________________________________________
\(\Rightarrow\left(a^n+b^n+c^n\right)\ge n\left(\frac{a+b+c}{3}\right)^{n-1}\left(a+b+c\right)-3\left(n-1\right)\left(\frac{a+b+c}{3}\right)^n\)\(=3\left(\frac{a+b+c}{3}\right)^n\)