Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(f'\left(x\right)=x^2+2x\)
a.
\(f'\left(-3\right)=3\) ; \(f\left(-3\right)=-2\)
Phương trình tiếp tuyến:
\(y=3\left(x+3\right)-2\Leftrightarrow y=3x+7\)
b.
Gọi \(x_0\) là hoành độ tiếp điểm, do hệ số góc tiếp tuyến bằng 3
\(\Rightarrow f'\left(x_0\right)=3\Rightarrow x_0^2+2x_0=3\Rightarrow x_0^2+2x_0-3=0\)
\(\Rightarrow\left[{}\begin{matrix}x_0=1\Rightarrow y_0=-\dfrac{2}{3}\\x_0=-3\Rightarrow y_0=-2\end{matrix}\right.\)
Có 2 tiếp tuyến thỏa mãn:
\(\left[{}\begin{matrix}y=3\left(x-1\right)-\dfrac{2}{3}=3x-\dfrac{11}{3}\\y=3\left(x+3\right)-2=3x+7\end{matrix}\right.\)
c. Tiếp tuyến song song (d) nên có hệ số góc bằng 8
Gọi \(x_0\) là hoành độ tiếp điểm \(\Rightarrow x_0^2+2x_0=8\)
\(\Rightarrow\left[{}\begin{matrix}x_0=2\Rightarrow y_0=\dfrac{14}{3}\\x_0=-4\Rightarrow y_0=-\dfrac{22}{3}\end{matrix}\right.\)
Có 2 tiếp tuyến thỏa mãn:
\(\left[{}\begin{matrix}y=8\left(x-2\right)+\dfrac{14}{3}=...\\y=8\left(x+4\right)-\dfrac{22}{3}=...\end{matrix}\right.\)
Xác suất:
\(P=C_9^7.\left(\dfrac{1}{4}\right)^7.\left(\dfrac{3}{4}\right)^2+C_9^8.\left(\dfrac{1}{4}\right)^8.\left(\dfrac{3}{4}\right)^1+C_9^9.\left(\dfrac{1}{4}\right)^9=\dfrac{11}{8192}\)
\(4\sin^22x-4\cos2x-1=0\)
\(\Leftrightarrow4\left(1-\cos^22x\right)-4\cos2x-1=0\)
\(\Leftrightarrow4-4\cos^22x-4\cos2x-1=0\)
\(\Leftrightarrow-4\cos^22x-4\cos2x+3=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos2x=\dfrac{1}{2}\\cos2x=\dfrac{-3}{2}\left(L\right)\end{matrix}\right.\Leftrightarrow\cos2x=\dfrac{1}{2}\Leftrightarrow\left[{}\begin{matrix}2x=\dfrac{\pi}{3}+k2\pi\\2x=-\dfrac{\pi}{3}-k2\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+k\pi\\x=-\dfrac{\pi}{6}-k\pi\end{matrix}\right.\left(k\in Z\right)\)
Chọn A
\(\left\{{}\begin{matrix}S\in\left(SAC\right)\\S\in\left(SBD\right)\end{matrix}\right.\) \(\Rightarrow S=\left(SAC\right)\cap\left(SBD\right)\)
\(\left\{{}\begin{matrix}O\in AC\in\left(SAC\right)\\O\in BD\in\left(SBD\right)\end{matrix}\right.\) \(\Rightarrow O=\left(SAC\right)\cap\left(SBD\right)\)
\(\Rightarrow SO=\left(SAC\right)\cap\left(SBD\right)\)
a.
\(y'=cos\left(3x+\dfrac{\pi}{2}\right).\left(3x+\dfrac{\pi}{2}\right)'=3cos\left(3x+\dfrac{\pi}{2}\right)=-3sin3x\)
b.
\(y'=-sin\left(3x-\dfrac{\pi}{6}\right).\left(3x-\dfrac{\pi}{6}\right)'=-3sin\left(3x-\dfrac{\pi}{6}\right)\)
a,\(y=sin\left(3x+\dfrac{\pi}{2}\right)\)
\(\Leftrightarrow\left(3x+\dfrac{\pi}{2}\right)'cos\left(3x+\dfrac{\pi}{2}\right)\)
\(\Leftrightarrow3cos\left(3x+\dfrac{\pi}{2}\right)\)
b,\(y=cos\left(3x-\dfrac{\pi}{6}\right)\)
\(\Leftrightarrow-\left(3x-\dfrac{\pi}{6}\right)'sin\left(3x-\dfrac{\pi}{6}\right)\)
\(\Leftrightarrow-3sin\left(3x-\dfrac{\pi}{6}\right)\)
a) `f^((n)) (x) = ((x+10)^6)^((n)) = 0 (n>6)`
b) `f^((n)) (x) = (cosx)^((n)) = cos(x+ (nπ)/2)`
c) `f^((n)) (x) = (sinx)^((n)) = sin(x + (nπ)/2)`