Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Ai đó giúp mình với! Mình đang cần gấp!:( Các bạn vẽ hình lun giúp mình nha! Cảm ơn các bạn nhìu!:)
Do tam giác ABC có
AB = 3 , AC = 4 , BC = 5
Suy ra ta được
(3*3)+(4*4)=5*5 ( định lý pi ta go)
9 + 16 = 25
Theo định lý py ta go thì tam giác abc vuông tại A
![](https://rs.olm.vn/images/avt/0.png?1311)
Hình bạn tự vẽ nhé
AH vuông góc với BC => Tam giác AHB và tam giác AHC vuông tại H
Áp dụng định lí Pytago cho tam giác vuông AHB ta được :
AB2 = AH2 + BH2
BH = \(\sqrt{AB^2-AH^2}=\sqrt{5^2-4^2}=3cm\)
Áp dụng định lí Pytago cho tam giác vuông AHC ta được :
AC2 = AH2 + HC2
\(AC=\sqrt{AH^2+HC^2}=\sqrt{4^2+12^2}=12,649...\approx12,65cm\)
H thuộc BC => BC = BH + HC = 3 + 12 = 15cm
Chu vi hình tam giác ABC = AB + AC + BC = 5 + 12, 65 + 15 = 32, 65cm
#Sai thì bỏ qua nhé xD
AD định lý Pytago vào trong tam giác ABH vuông tại H ta có: BH2 = AB2 - AH2=25-16=9
Suy ra BH=3(cm)
Ta có BC=BH+CH =12+3=15(cm)
AD định lý Pytago vào trong tam giác AHC vuông tại H ta có:AC2=AH2+HC2=42+122=160
Suy ra:AC=12,65(cm;tương đương)
Vậy chu vi tam giác ABC là: 5+15+12.65=32.65(cm)
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi I là giao điểm của AH và BC
Áp dụng định lí pytago trong tam giác vuông ABI ta có
BI2=AB2-AH2
BI2=8.52-42=56.25
BI=căn bậc hai của 56.25
Áp dụng định lí pytago trong tam giác vuông AIC ta có
IC^2=AC^2-AI^2
HC^2=5^2-4^2=9
HI=3
Ta co BI+IC=BC
7.5+3=10.5
Chu vi của tam giác ABC là 8.5+5+10.5=24
![](https://rs.olm.vn/images/avt/0.png?1311)
A B C H
XÉT \(\Delta BAH\)VUÔNG TẠI H
CÓ \(AB^2=BH^2+HA^2\left(Đ/L,PY-TA-GO\right)\)
THAY\(5^2=BH^2+4^2\)
\(\Rightarrow BH^2=5^2-4^2\)
\(\Rightarrow BH^2=25-16\)
\(\Rightarrow BH^2=9\)
\(\Rightarrow BH=\sqrt{9}=3\left(cm\right)\)
TA CÓ \(BH+HC=BC\)
THAY\(3+12=BC\)
\(BC=15\left(cm\right)\)
XÉT \(\Delta HAC\)VUÔNG TẠI H
CÓ \(AC^2=AH^2+HC^2\)(Đ/L PYTAGO)
THAY\(AC^2=4^2+12^2\)
\(AC^2=16+144\)
\(AC^2=160\)
\(\Rightarrow AC=\sqrt{160}=4\sqrt{10}\)
CHU VI \(\Delta ABC\)LÀ
\(AB+AC+BC=5+4\sqrt{10}+15=20+4\sqrt{10}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Áp dụng định lý Pitago, ta có: \(AC^2=AH^2+HC^2\)
\(\Rightarrow20^2=12^2+HC^2\)
\(\Rightarrow HC^2=20^2-12^2\)
\(\Rightarrow HC^2=400-144=256\)
\(\Rightarrow HC=16\left(cm\right)\)
Áp dụng định lý Pitago, ta có: \(AB^2=BH^2+AH^2\)
\(\Rightarrow AB^2=5^2+12^2\)
\(\Rightarrow AB^2=25+144=169\)
\(\Rightarrow AB=13\left(cm\right)\)
Vậy CV tam giác ABC là
\(20+5+16+13=54\left(cm\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có:\(AC^2=HC^2+AH^2\)(Định lý pytago)
\(\Rightarrow AH^2=AC^2-HC^2=4^2-2^2=16-4=12\)
\(\Rightarrow AH=\sqrt{12}\approx3\)
Độ dài BC là :3+2=5
Chu vi của tam giác ABC la:\(4+5+5\approx14\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Vì AH vuông góc với BC mà tam giác ABC cân tại A (gt)
Nên AH vừa là đường cao vừa là đường trung tuyến
\(\Rightarrow\)H là trung điểm của BC
\(\Rightarrow BH=\frac{BC}{2}=\frac{10}{2}=5\left(cm\right)\)
Áp dụng định lý Pi-ta-go vào tam giác ABH vuông tại H có:
\(AB^2=AH^2+BH^2\)
\(\Rightarrow AH^2=AB^2-BH^2\)
Hay \(AH^2=12^2-5^2\)
\(\Rightarrow AH^2=144-25\)
\(\Rightarrow AH^2=119\)
\(\Rightarrow AH=\sqrt{119}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
bài 1: a) trong tam giác ABC có: góc A + góc B + góc C = 1800 (định lý)
hay góc A + 700 + 300 = 1800
=> góc A = 1700