Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔMIN vuông tại I và ΔMIP vuông tại I có
MN=MP
MI chung
Do đó: ΔMIN=ΔMIP
b: Xét ΔMKI vuông tại K và ΔMEI vuông tại E có
MI chung
\(\widehat{KMI}=\widehat{EMI}\)
Do đó: ΔMKI=ΔMEI
Suy ra: MK=ME
c: Xét ΔMNP có MK/MN=ME/MP
nên KE//NP
Gọi gốc là điểm A, chỗ gãy là B, ngọn đã gãy là điểm C
Xét tam giác ABC vuông tại A có: AB = 6m, BC = 16m - 6m = 10m
=> AB2 + AC2 = BC2 (Định lý Py-ta-go)
Thay: 62 + AC2 = 102
36 + AC2 = 100
AC2 = 100 - 36 = 64
AC = 8 (m)
Vậy khoảng cách từ gốc đến ngọn cây bị gãy là 8 mét
Nếu đúng hãy K cho mình nha
Học tốt nhé
\(\widehat{XAB}\) + \(\widehat{ABZ}\) = 1300 + 500 = 1800
Vì góc XAB và góc ABZ là hai góc trong cùng phía nên
Ax // BZ
BZ // Cy ⇔ \(x\) + \(\widehat{yCB}\) =1800
⇒ \(x\) = 1800 - 1450 = 350
Bài 2:
Áp dụng tính chất của dãy tỉ số bằng nhau,ta được
\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}=\dfrac{a+b+c}{2+3+4}=\dfrac{45}{9}=5\)
Do đó: a=10; b=15;c=20
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{\dfrac{1}{8}}=\dfrac{b}{\dfrac{1}{9}}=\dfrac{c}{\dfrac{1}{10}}=\dfrac{a+b+c}{\dfrac{1}{8}+\dfrac{1}{9}+\dfrac{1}{10}}=\dfrac{121}{\dfrac{121}{360}}=360\)
Do đó: a=45; b=40; c=36
4: Xét ΔAMC có
I là trung điểm của AM
N là trung điểm của AC
Do đó: IN là đường trung bình của ΔAMC
Suy ra: IN//MC
hay IN//BC
1: Xét ΔABC có AB=AC
nên ΔABC cân tại A
Suy ra: \(\widehat{B}=\widehat{C}\)
Ta có: ΔBAC cân tại A
mà AH là đường trung tuyến ứng với cạnh đáy BC
nên AH là đường cao ứng với cạnh BC
Bài 4:
a: Xét ΔBDC vuông tại D có \(BC^2=BD^2+DC^2\)
nên BC=10(cm)
b: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
\(\widehat{EAC}\) chung
Do đó: ΔABD=ΔACE
c: Ta có: ΔABD=ΔACE
nên AD=AE
hay ΔADE cân tại A
Xét ΔABC có
AE/AB=AD/AC
nên DE//BC
d: Xét ΔDBC vuông tại D và ΔDKC vuông tại D có
DB=DK
DC chung
Do đó: ΔDBC=ΔDKC
Suy ra: \(\widehat{DBC}=\widehat{DKC}\left(1\right)\)
Xét ΔEBC vuông tại E và ΔDCB vuông tại D có
BC chung
EC=DB
Do đó: ΔEBC=ΔDCB
Suy ra: \(\widehat{ECB}=\widehat{DBC}\left(2\right)\)
Từ (1) và (2) suy ra \(\widehat{ECB}=\widehat{DKC}\)