K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 9 2021

làm r mà bạn ei

10 tháng 9 2021

Chưa mà bạn

13 tháng 9 2018

7a có: \(\frac{1}{2}=x^2+y^2\ge\frac{\left(x+y\right)^2}{2}\)\(\Leftrightarrow x+y\le1\)

Áp dụng BD7 Cauchy-SChwarz 7a có: 

 \(V7=\frac{x}{y+1}+\frac{y}{x+1}=x-\frac{xy}{y+1}+y-\frac{xy}{x+1}\)

\(\le x+y-\frac{\left(x^2+y^2\right)}{2}\left(\frac{1}{y+1}+\frac{1}{x+1}\right)\)

\(\le1-\frac{\frac{1}{2}}{2}\cdot\frac{4}{1+2}=\frac{2}{3}=VP\)

Dấu "='' khi \(x=y=\frac{1}{4}\)

10 tháng 12 2021

Theo đề bài, ta có:

x3+y3=x2−xy+y2x3+y3=x2−xy+y2

hay (x2−xy+y2)(x+y−1)=0(x2−xy+y2)(x+y−1)=0

⇒\orbr{x2−xy+y2=0x+y=1⇒\orbr{x2−xy+y2=0x+y=1

+ Với x2−xy+y2=0⇒x=y=0⇒P=52x2−xy+y2=0⇒x=y=0⇒P=52

+ với x+y=1⇒0≤x,y≤1⇒P≤1+√12+√0+2+√11+√0=4x+y=1⇒0≤x,y≤1⇒P≤1+12+0+2+11+0=4

Dấu đẳng thức xảy ra <=> x=1;y=0 và P≥1+√02+√1+2+√01+√1=43P≥1+02+1+2+01+1=43

Dấu đẳng thức xảy ra <=> x=0;y=1

Vậy max P=4 và min P =4/3

7 tháng 7 2016

Áp dụng bất đẳng thức Bunhiacopxki, ta có : \(1=\left(x.\sqrt{1-y^2}+y.\sqrt{1-x^2}\right)^2\le\left(x^2+y^2\right)\left(1-y^2+1-x^2\right)\)

\(\Rightarrow\left(x^2+y^2\right)\left(2-x^2-y^2\right)\ge1\Leftrightarrow\left(x^2+y^2\right)-2\left(x^2+y^2\right)+1\le0\Leftrightarrow\left(x^2+y^2-1\right)^2\le0\)

\(\Rightarrow\left(x^2+y^2-1\right)^2=0\)\(\Leftrightarrow x^2+y^2=1\)

8 tháng 8 2016

Áp dụng bđt \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) , dấu đẳng thức xảy ra khi và chỉ khi a = b

Ta có : \(M=\frac{1}{\sqrt{1+x^2}}+\frac{1}{\sqrt{1+y^2}}\ge\frac{4}{\sqrt{1+x^2}+\sqrt{1+y^2}}\)

Mặt khác, theo bđt Bunhiacopxki : \(\left(1.\sqrt{1+x^2}+1.\sqrt{1+y^2}\right)^2\le\left(1^2+1^2\right)\left(2+x^2+y^2\right)\)

\(\Rightarrow\sqrt{1+x^2}+\sqrt{1+y^2}\le\sqrt{20}=2\sqrt{5}\)

Do đó : \(M\ge\frac{4}{2\sqrt{5}}=\frac{2\sqrt{5}}{5}\). Dấu đẳng thức xảy ra \(\Leftrightarrow\hept{\begin{cases}x^2+y^2=8\\\sqrt{1+x^2}=\sqrt{1+y^2}\end{cases}\Leftrightarrow}x=y=2\)(vì x,y >0)

Vậy \(MinM=\frac{2\sqrt{5}}{5}\Leftrightarrow x=y=2\)

8 tháng 8 2016

\(M\ge\frac{\left(1+1\right)^2}{\sqrt{1+x^2}+\sqrt{1+y^2}}\ge\frac{4}{\frac{1+x^2+5+1+y^2+5}{2\sqrt{5}}}=\frac{2\sqrt{5}}{5}\)
dấu = xảy ra khi x=y và x^2+y^2=8=> x=y=2

AH
Akai Haruma
Giáo viên
29 tháng 5 2023

Lời giải:

$(x+\sqrt{x^2+1})(y+\sqrt{y^2+1})=2$

$\Leftrightarrow (x+\sqrt{x^2+1})(x-\sqrt{x^2+1})(y+\sqrt{y^2+1})=2(x-\sqrt{x^2+1})$

$\Leftrightarrow -(y+\sqrt{y^2+1})=2(x-\sqrt{x^2+1})$

$\Leftrightarrow 2x+\sqrt{y^2+1}=2\sqrt{x^2+1}-y$

$\Rightarrow (2x+\sqrt{y^2+1})^2=(2\sqrt{x^2+1}-y)^2$
$\Leftrightarrow 4x^2+y^2+1+4x\sqrt{y^2+1}=4(x^2+1)+y^2-4y\sqrt{x^2+1}$

$\Leftrightarrow 4(x\sqrt{y^2+1})+y\sqrt{x^2+1})=3$

$\Leftrightarrow 4Q=3$

$\Leftrightarrow Q=\frac{3}{4}$