\(\frac{1}{a}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
20 tháng 5 2020

\(\frac{1}{a}+\frac{1}{b}=\frac{1}{2}\Leftrightarrow\frac{a+b}{ab}=\frac{1}{2}\Leftrightarrow4\left(a+b\right)=2ab\)

\(\left(x^2+ax+b\right)\left(x^2+bx+a\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2+ax+b=0\left(1\right)\\x^2+bx+a=0\left(2\right)\end{matrix}\right.\)

Ta có: \(\Delta_1=a^2-4b\) ; \(\Delta_2=b^2-4a\)

\(\Rightarrow\Delta_1+\Delta_2=a^2+b^2-4\left(a+b\right)=a^2+b^2-2ab=\left(a-b\right)^2\ge0;\forall a;b\)

\(\Rightarrow\) Tồn tại ít nhất 1 trong 2 giá trị \(\Delta_1\) hoặc \(\Delta_2\) ko âm

\(\Rightarrow\) Ít nhất 1 trong 2 pt (1) hoặc (2) có nghiệm \(\Rightarrow\) pt đã cho luôn có nghiệm

20 tháng 5 2020

*ax

22 tháng 1 2017

Theo đề bài ta có: \(\frac{1}{a}+\frac{1}{b}=-\frac{1}{2}\Leftrightarrow a+b=-\frac{ab}{2}\)

Ta lại có

\(x^2+ax+b=0\) có \(\Delta_1=a^2+4b\)

\(x^2+bx+a=0\) có \(\Delta_2=b^2+4a\)

\(\Rightarrow\Delta_1+\Delta_2=a^2+4b+b^2+4a=a^2+b^2+4\left(a+b\right)\)

\(=a^2+b^2+4\left(\frac{-ab}{2}\right)=a^2+b^2-2ab\)

\(=\left(a-b\right)^2\ge0\)

\(\Rightarrow\) Có ít nhất 1 trong hai \(\Delta_1,\Delta_2\) không âm

Vậy ít nhất 1 trong 2 phương trình trên có nghiệm hay phương trình ban đầu luôn có nghiệm

19 tháng 5 2017

sai đề TT

4 tháng 7 2019

Xét phương trình \(\left(x^2+ax+b\right)=0\left(1\right)\) có \(\Delta_1=a^2-4b\)

Xét phương trình \(\left(x^2+bx+a\right)=0\left(2\right)\) có \(\Delta_2=b^2-4a\)

       \(\Delta_1+\Delta_2=a^2+b^2-4\left(a+b\right)\)

mà \(\frac{1}{a}+\frac{1}{b}=\frac{1}{2}\Leftrightarrow2\left(a+b\right)=ab\)

\(\Rightarrow\Delta_1+\Delta_2=a^2+b^2-4\left(a+b\right)=a^2+b^2-2ab=\left(a-b\right)^2\ge0\)

=> Có ít nhất 1 trong 2 pt có nghiệm 

=> đpcm

19 tháng 8 2020

Câu 2: Theo định lý Vi-et ta có \(\hept{\begin{cases}x_1+x_2=-a\\x_1x_2=b\end{cases}}\)Bất Đẳng Thức cần chứng minh có dạng

\(\frac{x_1}{1+x_1}+\frac{x_2}{1+x_2}\ge\frac{2\sqrt{x_1x_2}}{1+\sqrt{x_1x_2}}\)Hay \(\frac{x_1}{1+x_2}+1+\frac{x_2}{1+x_1}+1\ge\frac{2\sqrt{x_1x_2}}{1+\sqrt{x_1x_2}}+2\)

\(\left(x_1+x_2+1\right)\left(\frac{1}{1+x_1}+\frac{1}{1+x_2}\right)\ge\frac{2\left(1+2\sqrt{x_1x_2}\right)}{1+\sqrt{x_1x_2}}\)Theo Bất Đẳng Thức Cosi ta có

\(x_1+x_2+1\ge2\sqrt{x_1x_2}+1\)Để chứng minh (*) ta quy về chứng minh

\(\frac{1}{1+x_1}+\frac{1}{1+x_2}\ge\frac{2}{1+\sqrt{x_1x_2}}\)với \(x_1;x_2>1\). Quy đồng rồi rút gọn Bất Đẳng Thức trên tương đương với

\(\left(\sqrt{x_1x_2}-1\right)\left(\sqrt{x_1}-\sqrt{x_2}\right)^2\ge0\)(Điều này hiển nhiên đúng)

Dấu "=" xảy ra khi và chỉ khi \(x_1=x_2\Leftrightarrow a^2=4b\)

19 tháng 8 2020

Bạn ơi thế a^2 - 4b ở vế trái bạn vứt đi đâu r ????

7 tháng 6 2018

1/ Đặt \(\hept{\begin{cases}\sqrt{x-2013}=a\\\sqrt{x-2014}=b\end{cases}}\)

Thì ta có:

\(\frac{\sqrt{x-2013}}{x+2}+\frac{\sqrt{x-2014}}{x}=\frac{a}{a^2+2015}+\frac{b}{b^2+2014}\)

\(\le\frac{a}{2a\sqrt{2015}}+\frac{b}{2b\sqrt{2014}}=\frac{1}{2\sqrt{2015}}+\frac{1}{2\sqrt{2014}}\)

7 tháng 6 2018

2/ \(\frac{x}{2x+y+z}+\frac{y}{x+2y+z}+\frac{z}{x+y+2z}\)

\(\le\frac{1}{4}\left(\frac{x}{x+y}+\frac{x}{x+z}+\frac{y}{y+x}+\frac{y}{y+z}+\frac{z}{z+x}+\frac{z}{z+y}\right)\)

\(=\frac{3}{4}\)

Ta có: \(B=\frac{9\sqrt{a}-\sqrt{25a}+\sqrt{4a^3}}{a^2+2a}\)

\(=\frac{9\sqrt{a}-5\sqrt{a}+2a\sqrt{a}}{a\left(a+2\right)}\)

\(=\frac{\sqrt{a}\left(4+2a\right)}{a\left(a+2\right)}=\frac{2\sqrt{a}\left(a+2\right)}{\sqrt{a}\cdot\sqrt{a}\cdot\left(a+2\right)}\)

\(=\frac{2}{\sqrt{a}}\)

Ta có: \(C=\left(\frac{x-\sqrt{x}+2}{x-\sqrt{x}-2}-\frac{x}{x-2\sqrt{x}}\right):\frac{1-\sqrt{x}}{2-\sqrt{x}}\)

\(=\left(\frac{\sqrt{x}\left(x-\sqrt{x}+2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}-\frac{x\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\right)\cdot\frac{2-\sqrt{x}}{1-\sqrt{x}}\)

\(=\frac{x\sqrt{x}-x+2\sqrt{x}-x\sqrt{x}-x}{\sqrt{x}\cdot\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}\cdot\frac{\sqrt{x}-2}{\sqrt{x}-1}\)

\(=\frac{-2x+2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(=\frac{-2\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(=\frac{-2}{\sqrt{x}+1}\)