K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 8 2021

Trả lời:

\(a,\sqrt{\left(11-6\sqrt{2}\right)^2}+\sqrt{\left(11+6\sqrt{2}\right)^2}\)

\(=\left|11-6\sqrt{2}\right|+\left|11+6\sqrt{2}\right|\)

\(=11-6\sqrt{2}+11+6\sqrt{2}\)

\(=22\)

b, \(\sqrt{\left(10-4\sqrt{6}\right)^2}-\sqrt{\left(10+4\sqrt{6}\right)^2}\)

\(=\left|10-4\sqrt{6}\right|-\left|10+4\sqrt{6}\right|\)

\(=10-4\sqrt{6}-\left(10+4\sqrt{6}\right)\)

\(=10-4\sqrt{6}-10-4\sqrt{6}\)

\(=-8\sqrt{6}\)

c, \(\sqrt{\left(4-\sqrt{5}\right)^2}+\sqrt{\left(1-\sqrt{5}\right)^2}\)

\(=\left|4-\sqrt{5}\right|+\left|1-\sqrt{5}\right|\)

\(=4-\sqrt{5}+\sqrt{5}-1\)

\(=3\)

d, \(\sqrt{\left(7+\sqrt{2}\right)^2}-\sqrt{\left(1-\sqrt{2}\right)^2}\)

\(=\left|7+\sqrt{2}\right|-\left|1-\sqrt{2}\right|\)

\(=7+\sqrt{2}-\left(\sqrt{2}-1\right)\)

\(=7+\sqrt{2}-\sqrt{2}+1\)

\(=8\)

31 tháng 8 2021

Trả lời:

Bài 2:

a, \(5\sqrt{25a^2}-25a\) với \(a\le0\)

\(=5\sqrt{\left(5a\right)^2}-25a\)

\(=5.\left|5a\right|-25a\)

\(=5.\left(-5a\right)-25a\) (vì \(a\le0\))

\(=-25a-25a=-50a\)

b, \(\sqrt{49a^2}+3a\) với \(a\ge0\) 

\(=\sqrt{\left(7a\right)^2}+3a\)

\(=\left|7a\right|+3a\)

\(=7a+3a\) (vì \(a\ge0\))

\(=10a\) 

c, \(\sqrt{16a^4}+6a^2\)

\(=\sqrt{\left(4a^2\right)^2}+6a^2\)

\(=\left|4a^2\right|+6a^2\)

\(=4a^2+6a^2=10a^2\)

d, \(3\sqrt{9a^6}-6a^3\) với \(a\le0\)

\(=3\sqrt{\left(3a^3\right)^2}-6a^3\)

\(=3.\left|3a^3\right|-6a^3\)

\(=3.\left(-3a^3\right)-6a^3\) (vì \(a\le0\))

\(=-9a^3-6a^3=-15a^3\)

NM
5 tháng 9 2021

đây là bài lớp 10 chứ nhỉ

ta có \(AC=20\times2=40\text{ hải lí}\)\(AB=15\times2=30\text{ hải lí}\)

áp dụng định lý cosin ta có :

\(BC=\sqrt{AB^2+AC^2-2AB.AC\text{c}osA}=\sqrt{40^2+30^2-2\times30\times40\times cos60^o}\simeq36.06\text{ hải lí}\)

DD
14 tháng 10 2021

1.3 Giải phương trình: 

a) \(\sqrt{2x+3}=1+\sqrt{2}\)(ĐK: \(x\ge-\frac{3}{2}\)

\(\Leftrightarrow2x+3=\left(1+\sqrt{2}\right)^2=3+2\sqrt{2}\)

\(\Leftrightarrow2x=2\sqrt{2}\)

\(\Leftrightarrow x=\sqrt{2}\)(tm) 

b) \(\sqrt{x+1}=\sqrt{5}+3\)(ĐK: \(x\ge-1\)

\(\Leftrightarrow x+1=\left(\sqrt{5}+3\right)^2=14+6\sqrt{5}\)

\(\Leftrightarrow x=13+6\sqrt{5}\)(tm) 

c) \(\sqrt{3x-2}=2-\sqrt{3}\)(ĐK: \(x\ge\frac{2}{3}\))

\(\Leftrightarrow3x-2=\left(2-\sqrt{3}\right)^2=7-4\sqrt{3}\)

\(\Leftrightarrow x=\frac{9-4\sqrt{3}}{3}\)(tm) 

1.4: Phân tích thành nhân tử: 

a) \(ab+b\sqrt{a}+\sqrt{a}+1=b\sqrt{a}\left(\sqrt{a}+1\right)+\left(\sqrt{a}+1\right)=\left(b\sqrt{a}+1\right)\left(\sqrt{a}+1\right)\)

b) \(\sqrt{x^3}-\sqrt{y^3}+\sqrt{x^2y}-\sqrt{xy^2}=x\sqrt{x}-y\sqrt{y}+x\sqrt{y}-y\sqrt{x}\)

\(=\left(x-y\right)\left(\sqrt{x}+\sqrt{y}\right)\)

DD
20 tháng 8 2021

\(\left(d\right):\frac{x}{a}+\frac{y}{b}=1\)\(\left(1\right)\)

Thế \(x=a,y=0\)vào phương trình \(\left(1\right)\)thỏa mãn nên \(A\left(a,0\right)\)thuộc \(\left(d\right)\).

Thế \(x=0,y=b\)vào phương trình \(\left(1\right)\)thỏa mãn nên \(B\left(0,b\right)\)thuộc \(\left(d\right)\).

Do đó ta có đpcm. 

DD
7 tháng 11 2021

Bài 1: 

Kẻ \(OM\perp AB\)\(OM\)cắt \(CD\)tại \(N\).

Khi đó \(MN=8cm\).

TH1: \(AB,CD\)nằm cùng phía đối với \(O\).

\(R^2=OC^2=ON^2+CN^2=h^2+\left(\frac{25}{2}\right)^2\)(\(h=CN\)) (1)

\(R^2=OA^2=OM^2+AM^2=\left(h+8\right)^2+\left(\frac{15}{2}\right)^2\)(2) 

Từ (1) và (2) suy ra \(R=\frac{\sqrt{2581}}{4},h=\frac{9}{4}\).

TH2: \(AB,CD\)nằm khác phía với \(O\).

\(R^2=OC^2=ON^2+CN^2=h^2+\left(\frac{25}{2}\right)^2\)(\(h=CN\)) (3)

\(R^2=OA^2=OM^2+AM^2=\left(8-h\right)^2+\left(\frac{15}{2}\right)^2\)(4)

Từ (3) và (4) suy ra \(R=\frac{\sqrt{2581}}{4},h=\frac{-9}{4}\)(loại).

DD
7 tháng 11 2021

Bài 3: 

Lấy \(A'\)đối xứng với \(A\)qua \(Ox\), khi đó \(A'\)có tọa độ là \(\left(1,-2\right)\).

\(MA+MB=MA'+MB\ge A'B\)

Dấu \(=\)xảy ra khi \(M\)là giao điểm của \(A'B\)với trục \(Ox\).

Suy ra \(M\left(\frac{5}{3},0\right)\).

10 tháng 11 2021

Gọi số ngày hoàn thành công việc nếu làm riêng của người thứ nhất là x, người thứ 2 là y(ngày),(x,y>0)

1 ngày người thứ nhất làm được:\(\frac{1}{x}\)

1 ngày người thứ hai làm được:\(\frac{1}{y}\)

=> 1 ngày cả người làm được:\(\frac{1}{x}+\frac{1}{y}=\frac{1}{12}\)(1)

3 ngày người thứ nhất làm được:\(\frac{3}{x}\)

Vì sau 3 ngày, người thứ 2 làm nốt 15 ngày nên: Số ngày người thứ 2 làm là 15+3=18

18 ngày người thứ hai làm được \(\frac{18}{x}\)

Do đó, ta được:\(\frac{3}{x}+\frac{18}{y}=1\)(2)

Từ (1) và (2) , ta có hệ: \(\hept{\begin{cases}\frac{1}{x}+\frac{1}{y}=\frac{1}{12}\\\frac{3}{x}+\frac{18}{y}=1\end{cases}}\)

Đặt \(\frac{1}{x}\)= a, \(\frac{1}{y}\)= b, ta được

\(\hept{\begin{cases}a+b=\frac{1}{12}\\3a+18b=1\end{cases}}\)<=>\(\hept{\begin{cases}a=\frac{1}{30}\\b=\frac{1}{20}\end{cases}}\)<=>\(\hept{\begin{cases}x=30\\y=20\end{cases}}\). Vậy......

10 tháng 11 2021

Chỗ 18 ngày của ngườ thứ 2 là \(\frac{18}{y}\)nha