Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(=\left(\dfrac{x}{x+3}-\dfrac{x^2+9}{\left(x-3\right)\left(x+3\right)}\right):\left(\dfrac{3x+1}{x\left(x-3\right)}-\dfrac{1}{x}\right)\)
\(=\left(\dfrac{x\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}-\dfrac{x^2+9}{\left(x-3\right)\left(x+3\right)}\right):\left(\dfrac{3x+1}{x\left(x-3\right)}-\dfrac{x-3}{x\left(x-3\right)}\right)\)
\(=\left(\dfrac{x^2-3x-x^2-9}{\left(x+3\right)\left(x-3\right)}\right):\left(\dfrac{3x+1-x+3}{x\left(x-3\right)}\right)\)
\(=\dfrac{-3\left(x+3\right)}{\left(x+3\right)\left(x-3\right)}:\dfrac{2x+4}{x\left(x-3\right)}\)
\(=\dfrac{-3}{\left(x-3\right)}\cdot\dfrac{x\left(x-3\right)}{2x+4}\\ =\dfrac{-3x}{2x+4}\)
b)
với `x=-1/2` (tmđk) ta có
\(\dfrac{-3\cdot\left(\dfrac{-1}{2}\right)}{2\cdot\left(-\dfrac{1}{2}\right)+4}=\dfrac{1}{2}\)
c)
để P=x thì
\(\dfrac{-3x}{2x+4}=x\)
\(=>-3x=\left(2x+4\right)\cdot x\)
\(-3x=2x^2+4x\)
\(2x^2+4x+3x=0\)
\(2x^2+7x=0\)
\(x\left(2x+7\right)=0\)
\(=>\left[{}\begin{matrix}x=0\\2x+7=0\end{matrix}\right.=>\left[{}\begin{matrix}x=0\left(loại\right)\\x=-\dfrac{7}{2}\left(tm\right)\end{matrix}\right.\)
d)
mik ko bt lm=)
a: AC=căn 20^2-12^2=16cm
AH=12*16/20=9,6cm
b: ΔABC vuông tại A có AH là đường cao
nên AH^2=HB*HC(hệ thức lượng)
c: ΔABK vuông tại B có BH là đường cao
nên AH*AK=AB^2
ΔABC vuông tại A có AH là đường cao
nên BH*BC=AB^2
=>BH*BC=AH*AK
a.
Ta có \(BD||AC\) (cùng vuông góc AB)
Áp dụng định lý Talet trong tam giác ACE: \(\dfrac{BE}{BA}=\dfrac{DE}{DC}\)
b.
Ta có \(IK||BD||AC\) \(\Rightarrow EI||AC\)
Áp dụng Talet: \(\dfrac{DC}{ED}=\dfrac{DA}{ID}\Rightarrow\dfrac{DC}{DC+ED}=\dfrac{DA}{DA+ID}\Rightarrow\dfrac{DC}{CE}=\dfrac{DA}{AI}\) (1)
Do \(BD||EK\), áp dụng Talet trong tam giác CEK: \(\dfrac{BD}{EK}=\dfrac{CD}{CE}\) (2)
Do \(BD||EI\), áp dụng Talet trong tam giác AEI: \(\dfrac{BD}{EI}=\dfrac{AD}{AI}\) (3)
Từ(1);(2);(3) \(\Rightarrow\dfrac{BD}{EK}=\dfrac{BD}{EI}\Rightarrow EK=EI\)
\(\dfrac{x+2}{x-3}< 0\)vì \(x+2>x-3\)
\(\left\{{}\begin{matrix}x+2>0\\x-3< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>-2\\x< 3\end{matrix}\right.\)<=> -2 < x < 3
b) Ta có: \(3x+3< 5\left(x+1\right)-2\)
\(\Leftrightarrow3x+3-5x-5+2< 0\)
\(\Leftrightarrow-2x< 0\)
hay x>0
c) Ta có: \(\dfrac{x+1}{x+3}>1\)
\(\Leftrightarrow\dfrac{x+1}{x+3}-\dfrac{x+3}{x+3}>0\)
\(\Leftrightarrow\dfrac{-2}{x+3}>0\)
\(\Leftrightarrow x+3< 0\)
hay x<-3
d) Ta có: \(\left|2x-1\right|=x-2\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=x-2\left(x\ge\dfrac{1}{2}\right)\\2x-1=2-x\left(x< \dfrac{1}{2}\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\left(loại\right)\\x=1\left(loại\right)\end{matrix}\right.\)
a) Ta có: \(\dfrac{2x+5}{x+3}+1=\dfrac{4}{x^2+2x-3}-\dfrac{3x-1}{1-x}\)
\(\Leftrightarrow\dfrac{\left(2x+5\right)\left(x-1\right)}{\left(x+3\right)\left(x-1\right)}+\dfrac{x^2+2x-3}{\left(x+3\right)\left(x-1\right)}=\dfrac{4}{\left(x+3\right)\left(x-1\right)}+\dfrac{\left(3x-1\right)\left(x+3\right)}{\left(x-1\right)\left(x+3\right)}\)
Suy ra: \(2x^2-2x+5x-5+x^2+2x-3=4+3x^2+9x-x-3\)
\(\Leftrightarrow3x^2+5x-8-3x^2-8x-1=0\)
\(\Leftrightarrow-3x=9\)
hay x=-3(loại)
e) Ta có: \(\dfrac{x-1}{x+3}-\dfrac{x}{x-3}=\dfrac{7x-3}{9-x^2}\)
\(\Leftrightarrow\dfrac{\left(x-1\right)\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}-\dfrac{x\left(x+3\right)}{\left(x+3\right)\left(x-3\right)}=\dfrac{3-7x}{\left(x-3\right)\left(x+3\right)}\)
Suy ra: \(x^2-4x+3-x^2-3x-3+7x=0\)
\(\Leftrightarrow0x=0\)(Luôn đúng)
vậy: S={x|\(x\notin\left\{3;-3\right\}\)}
Ta có: \(\dfrac{150}{x+10}-\dfrac{150}{x}=\dfrac{1}{2}\)
\(\Leftrightarrow\dfrac{300x}{2x\left(x+10\right)}-\dfrac{300\left(x+10\right)}{2x\left(x+10\right)}=\dfrac{x\left(x+10\right)}{2x\left(x+10\right)}\)
\(\Leftrightarrow x^2+10x=300x-300x-3000\)
\(\Leftrightarrow x^2+10x+3000=0\)
\(\Leftrightarrow x^2+10x+25+2975=0\)
\(\Leftrightarrow\left(x+5\right)^2+2975=0\)(Vô lý)
a: =>x(x-3)(x+3)=0
=>\(x\in\left\{0;3;-3\right\}\)
b:=>(x-2)(x-2-x-5)=0
=>x-2=0
=>x=2
c:=>(x-3)^2=0
=>x-3=0
=>x=3
d: =>(x-1)(x-6)=0
=>x=1 hoặc x=6