GIÚP MÌNH VỚ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
29 tháng 1 2024

1.

\(x^3-mx^2+\left(m-2\right)x+1=0\)

\(\Leftrightarrow x^3-2x+1-m\left(x^2-x\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2+x-1\right)-mx\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2-\left(m-1\right)x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x^2-\left(m-1\right)x-1=0\left(1\right)\end{matrix}\right.\)

Để pt có 3 nghiệm pb  \(\Leftrightarrow f\left(x\right)=x^2-\left(m-1\right)x-1=0\) có 2 nghiệm pb khác 1

\(\Leftrightarrow f\left(1\right)=1-\left(m-1\right)-1\ne0\) (pt trên hiển nhiên luôn có 2 nghiệm pb trái dấu do \(ac=-1< 0\))

\(\Leftrightarrow m\ne1\)

2.

\(x^3+\left(m+1\right)x^2+2mx+4=0\)

\(\Leftrightarrow x^3+x^2+4+mx\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x^2-x+2\right)+mx\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x^2+\left(m-1\right)x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x^2+\left(m-1\right)x+2=0\left(1\right)\end{matrix}\right.\)

Pt có 2 nghiệm khi:

TH1: (1) có nghiệm kép khác 2

\(\Rightarrow\left\{{}\begin{matrix}\Delta=\left(m-1\right)^2-8=0\\-\dfrac{b}{2a}=\dfrac{1-m}{2}\ne2\end{matrix}\right.\) \(\Rightarrow m=1\pm2\sqrt{2}\)

TH2: (1) có 2 nghiệm pb và 1 nghiệm trong đó bằng 2

\(\Rightarrow\left\{{}\begin{matrix}\Delta=\left(m-1\right)^2-8>0\\f\left(2\right)=4+2\left(m-1\right)+2=0\end{matrix}\right.\) \(\Rightarrow m=-2\)

29 tháng 1 2024

Em cảm ơn ạ!

10 tháng 2 2022

\(A=\left(m-2;6\right),B=\left(-2;2m+2\right).\)

Để \(A,B\ne\varnothing\)

\(\Rightarrow\orbr{\begin{cases}m-2\ge-2\\2m+2>6\end{cases}}\Rightarrow\orbr{\begin{cases}m\ge0\\m>2\end{cases}}\)

Kết hợp ĐK \(2< m< 8\)

\(\Rightarrow m\in\left(2;8\right)\)

10 tháng 2 2022
m€{2;8} nha HT @@@@@@@@@@
29 tháng 7 2022

a ) \mathbb{R} \backslash (-3; \, 1]R\(3;1]=(-∞;-3]∪(1;+∞)

b) (-\infty; \, 1) \backslash [-2; \, 0](;1)\[2;0]=(- (-\infty; \, 1) \backslash [-2; \, 0]∞;-2)(0;1)

8 tháng 7

a ) R\(−3;1]=(-∞;-3]∪(1;+∞)

b)  [-2; \, 0](−∞;1)\[−2;0]= [-2; \, 0]∞;-2)∪(0;1)

27 tháng 4

✳️ Giải thích các điều kiện

📌 Điều kiện 1: \(A \subset \mathbb{R} \backslash B\)

  • Tức là mọi phần tử của \(A\) không thuộc \(B\)\(A \cap B = \emptyset\)
  • Nghĩa là: Không có phần tử chung giữa \(A = \left(\right. - \infty ; m \left.\right)\)\(B = \left[\right. 3 m + 1 ; 3 m + 2 \left]\right.\)

👉 Điều này xảy ra khi:

\(\left(\right. - \infty ; m \left.\right) \cap \left[\right. 3 m + 1 ; 3 m + 2 \left]\right. = \emptyset\)

→ Tức là:

\(m \leq 3 m + 1\)

Giải bất phương trình:

\(m \leq 3 m + 1 \Rightarrow - 2 m \leq 1 \Rightarrow m \geq - \frac{1}{2}\)


📌 Điều kiện 2: \(A \cap B \neq \emptyset\)

Tức là: phải có phần tử chung giữa \(A = \left(\right. - \infty ; m \left.\right)\)\(B = \left[\right. 3 m + 1 ; 3 m + 2 \left]\right.\)

→ Tức là:

\(\left(\right. - \infty ; m \left.\right) \cap \left[\right. 3 m + 1 ; 3 m + 2 \left]\right. \neq \emptyset\)

→ Điều này xảy ra khi tồn tại \(x \in \left[\right. 3 m + 1 ; 3 m + 2 \left]\right.\) sao cho \(x < m\)

→ Nói cách khác:

\(3 m + 1 < m\)

Giải bất phương trình:

\(3 m + 1 < m \Rightarrow 2 m < - 1 \Rightarrow m < - \frac{1}{2}\)


✅ Kết luận

  • Từ (1): \(m \geq - \frac{1}{2}\)
  • Từ (2): \(m < - \frac{1}{2}\)

⛔ Hai điều kiện mâu thuẫn nhau → Không có giá trị \(m\) nào thỏa mãn đồng thời cả hai điều kiện.

20 tháng 8

1và 1/12 bằng bao nhiêu






















10 tháng 2 2022

a) \(B\subset A\)

\(\Rightarrow\left(-4;5\right)\subset\left(2m-1;m+3\right)\)

\(\Rightarrow2m-1\le-4< 5\le m+3\)

\(\Rightarrow\hept{\begin{cases}2m-1\ge4\\5\le m+3\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}m< -\frac{3}{2}\\m\ge2\end{cases}}\left(ktm\right)\)

\(\Rightarrow m\in\varnothing\)

b) \(A\text{∩ }B=\varnothing\)

\(\Rightarrow\orbr{\begin{cases}m+3< -4\\5< 2m-1\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}m< -7\\m>3\end{cases}}\)

Vậy \(m< -7;m>3\)

10 tháng 2 2022
M<-7;m>3 nha HT @@@@@@@@@@@@@@

có lời giải chi tiết với ạ


Câu 40: -6<2x<=8

=>-3<x<=4

=>A=(-3;4]

=>\(C_{R}A\) =R\A=(-∞;3]\(\cup\) (4;+∞)

|x+1|<=2

=>-2<=x+1<=2

=>-3<=x<=1

=>B=[-3;1]

=>\(C_{R}B\) =R\B=(-∞;-3)\(\cup\) (1;+∞)

\(\left(C_{R}A\right)\) \\(\left(C_{R}B\right)\) =[-3;1]

=>Không có câu nào đúng

Câu 39:

Để A giao B=rỗng thì -m+2>2m+1 hoặc -m+5<=2m-3

=>-3m>-1 hoặc -3m<=-8

=>m<1/3 hoặc m>=8/3

=>Chọn B

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

Vì ABCD là hình bình hành nên ta có: \(\overrightarrow {AD}  = \overrightarrow {BC} \)\(\overrightarrow {AB}  + \overrightarrow {AD}  = \overrightarrow {AB}  + \overrightarrow {BC}  = \overrightarrow {AC} \) (đpcm)