K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2017

A B D C 60*

Xét\(\Delta BCD\)

\(CBD=180-^{BCD}-^{BCD}=180-60-30=90\Rightarrow\Delta BCD\)VUÔNG TẠI A

\(\Rightarrow BC=\frac{CD}{2}\)TAM GIÁC VUÔNG ĐỐI DIỆN GÓC 30Đ=\(\frac{1}{2}\)CẠNH HUYỀN\(\Rightarrow CD=2.BC\left(1\right)\)

+AB//CD\(\Rightarrow\)\(^{ABC}+^{BCD}=^{ABC}+60=180\)

\(\Rightarrow^{ABC}=180-60=120\Rightarrow^{ABD}=^{ABC}-^{CBD}=120-90=30\)

+XÉT \(\Delta ABD\)\(^{ADB}=^{ABD}=30\Rightarrow\frac{T}{G}ABD\)CÂN TẠI A\(\Rightarrow AD=AB\left(2\right)\)

+DO HÌNH THANG ABCD CÂN \(\Rightarrow\)AD=BC\(\left(3\right)\)

+CHU VI HÌNH THANG \(=AB+BC+CD+AD\left(4\right)\)

TỪ \(\left(1\right)\left(2\right)\left(3\right)\left(4\right)\)=CHU VI HÌNH THANG ABCD =5.BC=20CM

\(\Rightarrow BC=20:5=4CM\)

\(\Rightarrow AB=BC=AD=4CM\)

\(CD=2.BC=2.4=8CM\)

27 tháng 7 2023

a) Xét \(\Delta ACD\) vuông tại C, có:

\(CAD+ADC=90\) độ \(\Rightarrow ADC=90độ-ADC=90-60=30độ\)

AC là pgiac BAD=> \(CAD=CAB=\dfrac{1}{2}BAD\Rightarrow BAD=2CAD=2.30=60độ\)

Hình thang ABCD, có: BAD=CAD=60 độ=> ABCD là hình thang cân

b) \(\Delta ACD\) vuông tại C có : DAC=30 độ => \(CD=\dfrac{1}{2}AD\) (đlí)

BC//AD=>BCA=CAD (so le trong)

Mà BAC=DAC (cm a) 

=> BAC=BCA => tam giác ABC cân tại A =>BC=AB 

ABCD là hthang cân => AB=CD

Ta có: \(P_{ABCD}=AB+BC+CD+AD=CD+CD+CD+2CD=20\)

\(\Leftrightarrow CD=\dfrac{20}{5}=4\left(cm\right)\Rightarrow AD=2.CD=2.4=8\left(cm\right)\)

19 tháng 6 2016

1/

  A B C D H K 1 2,7

Kẻ AH \(\perp\)CD , \(BK\perp CD\)

Xét tam giác vuông AHD và tam giác vuông BKC, có: góc ADH = góc BCK = 600 ; cạnh AH = BK

   => tam giác AHD = tam giác BKC (gcg) 

   => DH = KC 

Đặt a = DH (a > 0) => AH = \(\sqrt{1-x^2}\)

Có: Sin60 = \(\frac{AH}{AD}\Rightarrow\frac{\sqrt{3}}{2}=\sqrt{1-x^2}\Rightarrow1-x^2=\frac{3}{4}\Rightarrow x^2=\frac{1}{4}\Rightarrow\left[\begin{array}{nghiempt}x=\frac{1}{2}\left(n\right)\\x=-\frac{1}{2}\left(l\right)\end{array}\right.\)

    => x = 1/2 hay DH = KC = 1/2 

Mặt khác: HK = CD - (DH + KC) = 2,7 - (1/2 + 1/2) = 1,7 (m)

Tứ giác ABCD là hình chữ nhật (góc AHK = góc BKH = ABK = 900) => AB = HK = 1,7 (m)

    Vậy AB = 1,7m

2/ 

I D C A B 1 2

a/ Cm: tam giác ICD đều:

 Trong tam giác ICD : DB vừa là đường phân giác , vừa là đường cao => tam giác ICD là tam giác cân tại D 

 => ID = DC (1)

 => DB vừa là đường trung tuyến => BI = BC = 4cm => IC = 4 + 4 = 8cm (2)

 Có: góc IAB = IDC (đồng vị) , góc IBA = góc ICD (đồng vị) 

       mà góc IDC = góc ICD

    => góc IAB = góc IBA => tam giác IAB cân tại I => IA = IB = 4cm

    => ID = IA + AD = 4 + 4 = 8cm (3) 

 Từ (1), (2), (3) => ID = DC = IC = 8cm hay tam giác IDC đều

b/ Tính chu vi hình thang ABCD:

 Vì tam giác ICD đều => tam giác IAB đều => IA = AB = 4cm

 ID = DC = 8cm

 Vậy chu vi hình thang ABCD : AB + AD + BC + CD = 4 + 4 + 4 + 8 = 20(cm)

22 tháng 6 2019

Em tham khảo câu 1 tại link dưới:

Câu hỏi của Thư Anh Nguyễn - Toán lớp 8 - Học toán với OnlineMath

27 tháng 8 2021

tia AB cắt DC tại E ta thấy 

AC là phân giác của góc ^DAE (gt) 

AC vuông DE (gt) 

=> tgiác ADE cân (AC vừa đường cao, vừa là phân giác) 

lại có góc D = 60o nên ADE là tgiác đều 

=> C là trung điểm DE (AC đồng thời la trung tuyến) 

mà BC // AD => BC là đường trung bình của tgiác ADE 
 

Ta có: 

AB = DC = AD/2 và BC = AD/2 

gt: AB + BC + CD + AD = 20 

=> AD/2 + AD/2 + AD/2 + AD = 20 

=> (5/2)AD = 20 

=> AD = 2.20 /5 = 8 cm

22 tháng 6 2023

2)

Có: \(\left\{{}\begin{matrix}AB=AD\left(gt\right)\\AD=BC\left(2.cạnh.bên.hình.thang.cân\right)\end{matrix}\right.\)

\(\Rightarrow AB=BC\Rightarrow\Delta ABC.cân.tại.B\)

Mà AB // ED (gt)

\(\Rightarrow\widehat{BAC}=\widehat{ACD}\left(so.le.trong\right)\)

\(\Rightarrow\widehat{ACB}=\widehat{ACD}\)

=> CA là tia phân giác của góc C.