Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Olm.vn sẽ hướng dẫn em giải bằng phương pháp đánh giá em nhé!
Nếu p = 2 \(\Rightarrow\) 2p2 + 1 = 2.22 + 1 = 9 (nhận)
Nếu p = 3 ⇒ 2p2 + 1 = 2.32 + 1 = 19 (loại)
Nếu p > 3 ⇒ p không chia hết cho 3 ⇒ p2 chia 3 dư 1
⇒ 2p2 : 3 dư 2 ⇒ 2p2 + 1 ⋮ 3 (nhận)
Từ những lập luận trên ta có
\(\forall\) p \(\ne\) 3; p \(\in\) P thì 2p2 + 1 là hợp số
b, p + 4 và p + 8 đều là số nguyên tố.
Nếu p = 2 thì p + 4 = 2 + 4 = 6 loại
Nếu p = 3 thì p + 4 = 3 + 4 = 7; p + 8 = 3 + 8 = 11 (nhận)
Nếu p > 3 ta có: p không chia hết cho 3 ⇒ p = 3k + 1
hoặc p = 3k + 2
th1 : p = 3k + 1 thì p + 8 = 3k + 1 + 8 = 3k + 9 ⋮ 3 (loại)
th2: p = 3k + 2 thì p + 4 = 3k + 2 + 4 = 3k + 6 ⋮ 3 (loại)
Từ những lập luận trên ta có p = 3 là giá trị thỏa mãn đề bài
![](https://rs.olm.vn/images/avt/0.png?1311)
a) xét các số nguyên tố p như sau:
+) xét p=2 => p++2=4 ( là hợp số, loại)
+) xét p=3 => p+2=5 và p+4 =7 ( đều là số nguyên tố, chọn)
+) xét các số nguyên tố p lớn hơn 3. khi chia p cho 3 ta có 3 dạng: p=3k+1 hoặc p=3k+2. ( k\(\in\)N*)
- nếu p=3k+1 =>p+2=3k+1+2=3k+3 chia hết cho 3 va lớn hơn 3
=> p+2 là hợp số( trái với đề, loại)
- nếu p=3k+2 => p+4=3k+2+4=3k+6 chia hết cho 3 và lớn hơn 3.
=> p+4 là hợp ( trái với đề, loại)
vậy p=3.
b) ta xét các số nguyên tố p như sau:
+) xét p=2 =>p+14=16 ( là hợp số, loại)
+) xét p=3=> p+1=4 ( loại)
vì các số nguyên tố lớn hơn 3 đều là số lẻ. => p+1 luôn luôn chẵn( không phải số nguyên tố)
=> không tìm được số nguyên tố thỏa mãn.
vậy không tìm được số nguyên tố thỏa mãn.
k cho mình nha!
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi hai số nguyên tố cần tìm là a và b Ta có quy tắc : số chẵn + số lẻ =số lẻ Theo đề bài cho tổng a và b = 601 (số lẻ ). Nên ta có a là số chẵn mà là số nguyên tố . Vậy a là hai vì hai là số nguyên tố chẵn duy nhất Từ các lập luận trên ta có biểu thức : a+b=601. 2+b=601. b=601-2. b=599. Vậy b =599.hai số nguyên tố cần tìm là 2 và 599 ( bài 1)