Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét (O) có
MA,MB là các tiếp tuyến
Do đó: MA=MB
=>M nằm trên đường trung trực của AB(1)
ta có: OA=OB
=>O nằm trên đường trung trực của AB(2)
Từ (1) và (2) suy ra MO là đường trung trực của AB
=>MO\(\perp\)AB tại H và H là trung điểm của AB
b: Ta có; ΔOAM vuông tại A
=>\(OA^2+AM^2=OM^2\)
=>\(AM^2=13^2-5^2=144\)
=>AM=12(cm)
Xét (O) có
DA,DC là các tiếp tuyến
Do đó: DA=DC và OD là phân giác của góc AOC
Xét (O) có
EB,EC là các tiếp tuyến
Do đó: EB=EC và OE là phân giác của góc BOC
Chu vi tam giác MDE là:
MD+DE+ME
=MD+DC+CE+EM
=MD+DA+ME+EB
=MA+MB
=2MA
=24(cm)
c: Xét (O) có
\(\widehat{MAC}\) là góc tạo bởi tiếp tuyến AM và dây cung AC
\(\widehat{ANC}\) là góc nội tiếp chắn cung AC
Do đó: \(\widehat{MAC}=\widehat{ANC}\)
=>\(\widehat{MAC}=\widehat{MNA}\)
Xét ΔMAC và ΔMNA có
\(\widehat{MAC}=\widehat{MNA}\)
\(\widehat{AMC}\) chung
Do đó: ΔMAC~ΔMNA
=>\(\dfrac{MA}{MN}=\dfrac{MC}{MA}\)
=>\(MA^2=MN\cdot MC\)
Xét ΔOAM vuông tại A có AH là đường cao
nên \(MH\cdot MO=MA^2\)
=>\(MH\cdot MO=MN\cdot MC\)
=>\(\dfrac{MH}{MN}=\dfrac{MC}{MO}\)
Xét ΔMHC và ΔMNO có
\(\dfrac{MH}{MN}=\dfrac{MC}{MO}\)
góc HMC chung
Do đó: ΔMHC~ΔMNO
=>\(\widehat{MHC}=\widehat{MNO}\)
mà \(\widehat{MNO}=\widehat{OCN}\)(ΔOCN cân tại O)
nên \(\widehat{MHC}=\widehat{OCN}\)
ĐKXĐ: \(x>0\)
Áp dụng BĐT Cauchy cho 2 số dương:
\(\sqrt{x}+\dfrac{1}{\sqrt{x}}\ge2\sqrt{\sqrt{x}.\dfrac{1}{\sqrt{x}}}=2\)
Dấu "=" xảy ra \(\Leftrightarrow\left(\sqrt{x}\right)^2=1\Leftrightarrow x=1\left(tm\right)\)
a) ĐKXĐ: \(x>0;x\ne\pm1.\)
\(A=\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}+\dfrac{\sqrt{x}}{\sqrt{x}+1}+\dfrac{\sqrt{x}}{1-x}\right):\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-1}+\dfrac{1-\sqrt{x}}{\sqrt{x}+1}\right).\\ A=\dfrac{x+2\sqrt{x}+1+x-\sqrt{x}-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\dfrac{x+2\sqrt{x}+1-x+2\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}.\)
\(A=\dfrac{2x+1}{4\sqrt{x}}.\)
b) \(A=\dfrac{3}{4}.\Rightarrow\dfrac{2x+1}{4\sqrt{x}}=\dfrac{3}{4}.\Rightarrow12\sqrt{x}-8x+4=0.\\ \Leftrightarrow8x-12\sqrt{x}-4=0.\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=\dfrac{3+\sqrt{17}}{4}.\\\sqrt{x}=\dfrac{3-\sqrt{17}}{4}.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{13+3\sqrt{17}}{8}.\\x=\dfrac{13-3\sqrt{17}}{8}.\end{matrix}\right.\) (TM).
\(\cos^225^0-\cos^235^0+\cos^245^0-\cos^255^0+\cos^265^0\)
\(=1-1+\dfrac{1}{2}=\dfrac{1}{2}\)
a: Xét (O) có
AB là tiếp tuyến
AC là tiếp tuyến
Do đó:AB=AC
hay A nằm trên đường trung trực của BC(1)
Ta có: OB=OC
nên O nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra OA là đường trung trực của BC
hay OA⊥BC
Xét tứ giác ABOC có
\(\widehat{ABO}+\widehat{ACO}=180^0\)
Do đó: ABOC là tứ giác nội tiếp
ĐKXĐ :\(\left\{{}\begin{matrix}x+1\ge0\\x^2+1\ge0\end{matrix}\right.\Leftrightarrow x\ge-1\)
Khi đó \((x^2+4x+5)\sqrt{x+1}=(3x^2-8x-5)\sqrt{x^2+1}\)
\(\Leftrightarrow(x^2+1)\sqrt{x+1}+4(x+1)\sqrt{x+1}=3(x^2+1)\sqrt{x^2+1}-8(x+1)\sqrt{x^2+1}\)
Đặt \(\sqrt{x+1}=a;\sqrt{x^2+1}=b(a\ge0;b>0)\)
Phương trình trở thành :
\(4a^3+ab^2=3b^3-8a^2b\)
\(\Leftrightarrow4(a^3+b^3)+b(8a^2+ab-7b^2)=0\)
\(\Leftrightarrow(a+b)(4a^2-4ab+4b^2)+(a+b)(8ab-7b^2)=0\)
\(\Leftrightarrow(a+b)(4a^2+4ab-3b^2)=0\)
\(\Leftrightarrow\left(a+b\right)\left(2a-b\right)\left(2a+3b\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a+b=0(\text{loại})\\2a-b=0\\2a+3b=0(\text{loại})\end{matrix}\right.\Leftrightarrow2a=b\) (vì \(\left\{{}\begin{matrix}a\ge0\\b>0\end{matrix}\right.\) nên a+b>0 ; 2a +3b > 0)
Trở lại cách đặt ta được
\(2\sqrt{x+1}=\sqrt{x^2+1}\Leftrightarrow x^2-4x-3=0\)
\(\Leftrightarrow x=\pm\sqrt{7}+2\) (loại \(x=-\sqrt{7}+2\))
Vậy x = \(\sqrt{7}+2\) là nghiệm phương trình
Gọi thời gian làm riêng của đội 2 là x
=>T1=x+9
Theo đề, ta có: 1/x+1/x+9=1/6
=>(2x+9)/(x^2+9x)=1/6
=>x^2+9x=12x+54
=>x^2-3x-54=0
=>x=9
=>T1=18h